
Transactions

1

Why Transactions?

• Database systems are normally being accessed
by many users or processes at the same time.
– Both queries and modifications.

• Unlike operating systems, which support
interaction of processes, a DMBS needs to
keep processes from troublesome
interactions.

2

Transactions

• A single "unit of work" in a DBMS.
• Can comprise more than one SQL command,

but each individual command does not stand
on its own.

3

Statement of Problem

• How do we allow concurrent running of
independent transactions while preserving
database integrity?

• Additionally, we want
– good response time and minimal waiting.
– correctness and fairness.

5

6

Another example: "lost update"
problem

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

time

9

Concurrency

• Arbitrary interleaving can lead to
– Temporary inconsistency (unavoidable)
– "Permanent" inconsistency (bad!)

10

Example: Bad Interaction

• You and friend each take $100 from different
ATMs at about the same time.
– The DBMS had better make sure one account

deduction doesn’t get lost.
• Compare: An OS allows two people to edit a

document at the same time. If both write,
one’s changes get lost.

11

Remember ACID?

12

Remember ACID?

13

ACID Transactions

• We want transactions to be:
– Atomic: Whole transaction or none is done.
– Consistent: Database constraints preserved.
– Isolated: It appears to the user as if only one

transaction executes at a time.
– Durable: Effects of a transaction survive a crash.

14

SQL Transactions

• BEGIN TRANSACTION
• // do SQL here
• either COMMIT or ROLLBACK

15

COMMIT

• The SQL statement COMMIT causes a
transaction to complete.
– Any database modifications are now permanent in

the database.

16

ROLLBACK

• The SQL statement ROLLBACK also causes the
transaction to end, but by aborting.
– No effects on the database.

• Failures like division by 0 or a constraint
violation can also cause rollback, even if the
programmer does not request it.

17

Isolation Levels

• SQL defines four isolation levels: choices about
what interactions are allowed by transactions
that execute at about the same time.

• Only one level (serializable) gives ACID
transactions.

• Each DBMS implements transactions in its own
way.

• Not all DBMS implement all four isolation levels.

18

Let's get abstract

• database - a fixed set of named data objects
(A, B, C, …)

• transaction - a sequence of read and write
operations (read(A), write(B), …)
– DBMS's abstract view of a user program

20

ACID Transactions

• ACID transactions are:
– Atomic : Whole transaction or none is done.
– Consistent : Database constraints preserved.
– Isolated : It appears to the user as if only one

process executes at a time.
– Durable : Effects of a process survive a crash.

21

Atomicity of Transactions

• Two possible outcomes of executing a
transaction:
– Xact might commit after completing all its actions
– or it could abort (or be aborted by the DBMS)

after executing some actions.
• DBMS guarantees that Xacts are atomic.

– From user's point of view: Xact always either
executes all its actions, or executes no actions at
all.

A

22

Mechanisms for Ensuring Atomicity

• What would you do?

A

24

Mechanisms for Ensuring Atomicity

• One approach: LOGGING
– DBMS logs all actions so that it can undo the

actions of aborted transactions.
• sort of like the black box on airplanes …

A

25

Mechanisms for Ensuring Atomicity

• Logging used by all modern systems.
• Q: why?

A

26

Mechanisms for Ensuring Atomicity

• Logging used by all modern systems.
• Q: why?
• A:

– audit trail &
– efficiency reasons

A

27

Transaction Consistency

• "Database consistency" - data in DBMS is
accurate in modeling real world and follows
integrity constraints

C

29

Transaction Consistency

• “Transaction Consistency”: if DBMS consistent
before Xact (running alone), it will be after
also

• Transaction consistency: User’s responsibility
– DBMS just checks integrity constraints

consistent
database

S1

consistent
database

S2
transaction T

C

30

Transaction Consistency (cont.)

• Recall: Integrity constraints
– must be true for DB to be considered consistent
Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. BALANCE >= 0

C

31

Transaction Consistency (cont.)

• System checks integrity constraints and if they
fail, the transaction rolls back (i.e., is aborted).
– Beyond this, DBMS does not understand the

semantics of the data.
– e.g., it does not understand how interest on a

bank account is computed

• This is the user's responsibility; DB cannot do
much other than enforce the rules and
rollback if violated.

C

32

Isolation of Transactions

• Users submit transactions, and
• Each transaction executes as if it was running

by itself.
– Concurrency is achieved by DBMS, which

interleaves actions (reads/writes of DB objects) of
various transactions.

• Q: How would you achieve that?

I

33

Isolation of Transactions

• A: Many methods - two main categories:
• Pessimistic – don’t let problems arise in the

first place
• Optimistic – assume conflicts are rare, deal

with them after they happen.

I

34

Example

• Consider two transactions (Xacts):
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

• 1st xact transfers $100 from B’s account to A’s
• 2nd credits both accounts with 1% interest.
• Assume at first A and B each have $1000. What are

the possible "legal" outcomes of running T1 and T2?
• meaning-what are the outcomes where all money

is accounted for?

I

35

Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

• many - but A+B should be: $2000 * 1.01 = $2020
• There is no guarantee that T1 will execute before T2

or vice-versa, if both are submitted together. But, the
net effect must be equivalent to these two
transactions running serially in some order.

• What are the legal ending values for the accounts?

I

36

Example (Contd.)
• Legal outcomes: A=1111,B=909 or A=1110,B=910
• Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• This is OK (same as T1;T2). But what about:
T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

I

37

Example (Contd.)
• Legal outcomes: A=1111,B=909 or A=1110,B=910
• Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• This is OK (same as T1;T2). But what about:
T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

• Result: A=1111, B=910; A+B = 2021, bank loses $1
• The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

I

38

Anomalies with Interleaved Execution

• Reading uncommitted data (WR Conflicts, "dirty
reads"):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

I

44

Anomalies with Interleaved Execution

• Reading uncommitted data (WR Conflicts, "dirty
reads"):

• Because T1 ends up aborting, the highlighted R(A) is
reading an incorrect value for A.

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

I

45

Anomalies with Interleaved Execution

• Nonrepeatable reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

46

Anomalies with Interleaved Execution

• Nonrepeatable reads (RW Conflicts):

• Transactions always must appear to be isolated, so the
two R(A) should return the same value.

• With a W(A) in between, the DB may or may not return
the same R(A) both times.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

47

Anomalies with Interleaved Execution

• Phantom read: Special case of a non-repeatable read
where the set of rows returned by the R(A) differs.

• Some people define a “non-repeatable read” to occur
when A is a single value from a single row, and a
“phantom read” when A is a set of rows.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

48

Anomalies (Continued)

• Overwriting uncommitted data (WW conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

I

49

Anomalies (Continued)

• Overwriting uncommitted data (WW conflicts):

• Two different WW conflicts here.

T1: W(A), W(B), C
T2: W(A), W(B), C

I

50

Isolation Levels

83

• SET TRANSACTION
ISOLATION LEVEL <level>

• (do after BEGIN TRANSACTION)

84

(Review) Goal: ACID Properties

• ACID transactions are:
– Atomic : Whole transaction or none is done.
– Consistent : Database constraints preserved.
– Isolated : It appears to the user as if only one

process executes at a time.
– Durable : Effects of a process survive a crash.

85

What happens if system crashes between commit
and flushing modified data to disk ?

Problem definition

• Records are on disk
• for updates, they are copied in memory
• and flushed back on disk, at the discretion of

the O.S.!
– (although you can force it)

D

86

Problem definition

• Records are on disk
• for updates, they are copied in memory
• and flushed back on disk, at the discretion of

the O.S.!
– (although you can force it)

• Solution: Write-ahead log
– All modifications are written to a log before they

are applied to the DB.

D

87

Durability - Recovering From a Crash

• At the end – all committed updates and only
those updates are reflected in the database.
– All active Xacts at time of crash are aborted when

system comes back up.

• Some care must be taken to handle the case
of a crash occurring during the recovery
process!

D

99

