
Deletion	in	a	B-tree	
Deletion	from	a	leaf	node	

1. Search	for	the	value	to	delete.	
2. If	the	value	is	in	a	leaf	node,	simply	delete	it	from	the	node.	
3. If	underflow	happens,	rebalance	the	tree	as	described	in	section	"Rebalancing	after	deletion"	below.	

	
Deletion	from	an	internal	node	

1. Choose	a	new	separator	(the	largest	element	in	the	left	subtree),	remove	it	from	the	leaf	node	it	is	in,	and	
replace	the	element	to	be	deleted	with	the	new	separator.	

2. The	previous	step	deleted	an	element	(the	new	separator)	from	a	leaf	node.	If	that	leaf	node	is	now	
deficient	(has	fewer	than	the	required	number	of	nodes),	then	rebalance	the	tree	starting	from	the	leaf	
node.	
	

Rebalancing	after	deletion	
Rebalancing	starts	from	a	leaf	and	proceeds	toward	the	root	until	the	tree	is	balanced.	If	deleting	an	element	from	a	
node	has	brought	it	under	the	minimum	size,	then	some	elements	must	be	redistributed	to	bring	all	nodes	up	to	the	
minimum.	Usually,	the	redistribution	involves	moving	an	element	from	a	sibling	node	that	has	more	than	the	
minimum	number	of	nodes.	That	redistribution	operation	is	called	a	rotation.	If	no	sibling	can	spare	an	element,	
then	the	deficient	node	must	be	merged	with	a	sibling.	The	merge	causes	the	parent	to	lose	a	separator	element,	so	
the	parent	may	become	deficient	and	need	rebalancing.	The	merging	and	rebalancing	may	continue	all	the	way	to	
the	root.	Since	the	minimum	element	count	doesn't	apply	to	the	root,	making	the	root	be	the	only	deficient	node	is	
not	a	problem.	The	algorithm	to	rebalance	the	tree	is	as	follows:	

• If	the	deficient	node's	right	sibling	exists	and	has	more	than	the	minimum	number	of	elements,	then	rotate	
left:	

1. Copy	the	separator	from	the	parent	to	the	end	of	the	deficient	node	(the	separator	moves	down;	the	
deficient	node	now	has	the	minimum	number	of	elements)	

2. Replace	the	separator	in	the	parent	with	the	first	element	of	the	right	sibling	(right	sibling	loses	one	
node	but	still	has	at	least	the	minimum	number	of	elements)	

3. The	tree	is	now	balanced	
	

• Otherwise,	if	the	deficient	node's	left	sibling	exists	and	has	more	than	the	minimum	number	of	elements,	then	
rotate	right:	

1. Copy	the	separator	from	the	parent	to	the	start	of	the	deficient	node	(the	separator	moves	down;	
deficient	node	now	has	the	minimum	number	of	elements)	

2. Replace	the	separator	in	the	parent	with	the	last	element	of	the	left	sibling	(left	sibling	loses	one	node	
but	still	has	at	least	the	minimum	number	of	elements)	

3. The	tree	is	now	balanced	
	

• Otherwise,	if	both	immediate	siblings	have	only	the	minimum	number	of	elements,	then	merge	with	a	sibling	
sandwiching	their	separator	taken	off	from	their	parent	

1. Copy	the	separator	to	the	end	of	the	left	node	(the	left	node	may	be	the	deficient	node	or	it	may	be	the	
sibling	with	the	minimum	number	of	elements)	

2. Move	all	elements	from	the	right	node	to	the	left	node	(the	left	node	now	has	the	maximum	number	of	
elements,	and	the	right	node	–	empty)	

3. Remove	the	separator	from	the	parent	along	with	its	empty	right	child	(the	parent	loses	an	element)	
• If	the	parent	is	the	root	and	now	has	no	elements,	then	free	it	and	make	the	merged	node	the	new	

root	(tree	becomes	shallower)	
• Otherwise,	if	the	parent	has	fewer	than	the	required	number	of	elements,	then	rebalance	the	

parent	
	


