Transactions

Why Transactions?

* Database systems are normally being accessed
by many users or processes at the same time.

— Both queries and modifications.

* Unlike operating systems, which support
interaction of processes, a DMBS needs to
keep processes from troublesome
Interactions.

Transactions

* Asingle "unit of work" in a DBMS.

 Can comprise more than one SQL command,

but each individual command does not stand
on its own.

Statement of Problem

* How do we allow concurrent running of
independent transactions while preserving

database integrity?
* Additionally, we want
— good response time and minimal waiting.

— correctness and fairness.

Another example: "lost update”

problem
Tl T2
Read(N)
time Read(N)
N=N-1
N=N-1
Write(N)
Write(N)

Concurrency

* Arbitrary interleaving can lead to
— Temporary inconsistency (unavoidable)
— "Permanent" inconsistency (bad!)

Example: Bad Interaction

* You and friend each take S100 from different
ATMs at about the same time.

— The DBMS had better make sure one account
deduction doesn’t get lost.

* Compare: An OS allows two people to edit a
document at the same time. If both write,
one’s changes get lost.

Remember ACID?

Remember ACID?

13

ACID Transactions

e We want transactions to be:
: Whole transaction or none is done.
: Database constraints preserved.

. It appears to the user as if only one
transaction executes at a time.

. Effects of a transaction survive a crash.

SQL Transactions

e BEGIN TRANSACTION
e // do SQL here
e either COMMIT or ROLLBACK

COMMIT

e The SQL statement COMMIT causes a
transaction to complete.

— Any database modifications are now permanent in
the database.

ROLLBACK

 The SQL statement ROLLBACK also causes the
transaction to end, but by aborting.

— No effects on the database.
* Failures like division by 0 or a constraint

violation can also cause rollback, even if the
programmer does not request it.

Isolation Levels

SQL defines four isolation levels: choices about
what interactions are allowed by transactions
that execute at about the same time.

Only one level (serializable) gives ACID
transactions.

Each DBMS implements transactions in its own
way.

Not all DBMS implement all four isolation levels.

Let's get abstract

* database - a fixed set of named data objects
(A, B, C, ...)

* transaction - a sequence of read and write
operations (read(A), write(B), ...)
— DBMS's abstract view of a user program

ACID Transactions

e ACID transactions are:
: Whole transaction or none is done.
: Database constraints preserved.

. It appears to the user as if only one
process executes at a time.

. Effects of a process survive a crash.

A Atomicity of Transactions

* Two possible outcomes of executing a
transaction:

— Xact might commit after completing all its actions

— or it could abort (or be aborted by the DBMS)
after executing some actions.

 DBMS guarantees that Xacts are atomic.

— From user's point of view: Xact always either
executes all its actions, or executes no actions at
all.

Mechanisms for Ensuring Atomicity

- What would you do?

Mechanisms for Ensuring Atomicity

* One approach: LOGGING

— DBMS logs all actions so that it can undo the
actions of aborted transactions.

e ~ |ike black box in airplanes ...

Mechanisms for Ensuring Atomicity

* Logging used by all modern systemes.
e Q: why?

Mechanisms for Ensuring Atomicity

* Logging used by all modern systemes.
e Q: why?
°* A:

— audit trail &

— efficiency reasons

C Transaction Consistency

 "Database consistency" - data in DBMS is
accurate in modeling real world and follows
Integrity constraints

C

Transaction Consistency

* “Transaction Consistency’ : if DBMS consistent

before Xact (running alone), it will be after

also

* Transaction consistency: User’s responsibility

— DBMS just checks IC

consistent

database
S1

transaction T)

consistent

database
S2

30

C Transaction Consistency (cont.)

* Recall: Integrity constraints
— must be true for DB to be considered consistent
Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. BALANCE>=0

C Transaction Consistency (cont.)

* System checks ICs and if they fail, the
transaction rolls back (i.e., is aborted).

— Beyond this, DBMS does not understand the
semantics of the data.

— e.g., it does not understand how interest on a
bank account is computed

* This is the user's responsibility; DB cannot do
much other than enforce the rules and
rollback if violated.

Isolation of Transactions

e Users submit transactions, and
* Each transaction executes as if it was running
by itself.

— Concurrency is achieved by DBMS, which
interleaves actions (reads/writes of DB objects) of
various transactions.

* Q: How would you achieve that?

Isolation of Transactions

* A: Many methods - two main categories:

* Pessimistic — don’t let problems arise in the
first place

e Optimistic —assume conflicts are rare, deal
with them after they happen.

I Example

* Consider two transactions (Xacts):

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

« 1st xact transfers $100 from B’ s accountto A’ s
e 2nd credits both accounts with 1% interest.

« Assume at first A and B each have $1000. What are
the legal outcomes of running T1 and T27?

Example

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01*A, B=1.01*B END

« many - but A+B should be: $2000 * 1.01 = $2020

« There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together. But, the
net effect must be equivalent to these two
transactions running serially in some order.

« What are the legal ending values for the accounts?

36

I Example (Contd.)

* Legal outcomes: A=1111,B=909 or A=1110,B=910
* Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

e Thisis OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

I Example (Contd.)

* Legal outcomes: A=1111,B=909 or A=1110,B=910
* Consider a possible interleaved schedule:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

e Thisis OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.01*A, B=1.01*B

« Result: A=1111, B=910; A+B = 2021, bank loses S1

« The DBMS’ s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

I Anomalies with Interleaved Execution

* Reading uncommitted data (WR Conflicts, "dirty
reads"):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

I Anomalies with Interleaved Execution

* Reading uncommitted data (WR Conflicts, "dirty
reads"):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

* Because T1 ends up aborting, the highlighted R(A) is
reading an incorrect value for A.

| . . .
Anomalies with Interleaved Execution

* Nonrepeatable reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

| . . .
Anomalies with Interleaved Execution

 Nonrepeatable reads (RW Conflicts):

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

* Transactions always must appear to be isolated, so the
two R(A) should return the same value.

 With a W(A) in between, the DB may or may not return
the same R(A) both times.

| . . .
Anomalies with Interleaved Execution

 Phantom read: Special case of a non-repeatable read
where the set of rows returned by the R(A) differs.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

 Some people define a “non-repeatable read” to occur
when A is a single value from a single row, and a
“phantom read” when A is a set of rows.

Anomalies (Continued)

* Overwriting uncommitted data (WW conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Anomalies (Continued)

* Overwriting uncommitted data (WW conflicts):

T1: W(A), C
T2: W(A), C

 Two different WW conflicts here.

Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible
Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

83

 SET TRANSACTION
ISOLATION LEVEL <level>

* (do after BEGIN TRANSACTION)

(Review) Goal: ACID Properties

e ACID transactions are:
— Atomic : Whole transaction or none is done.
— Consistent : Database constraints preserved.

— [solated : It appears to the user as if only one
process executes at a time.

— Durable : Effects of a process survive a crash.

What happens if system crashes between commit

and flushing modified data to disk ?

85

D Problem definition

* Records are on disk
e for updates, they are copied in memory

* and flushed back on disk, at the discretion of
the O.S.!

— (although you can force it)

Problem definition

Records are on disk
for updates, they are copied in memory

and flushed back on disk, at the discretion of
the O.S.!

— (although you can force it)

Solution: Write-ahead log

— All modifications are written to a log before they
are applied to the DB.

D Durability - Recovering From a Crash

* At the end — all committed updates and only
those updates are reflected in the database.

— All active Xacts at time of crash are aborted when
system comes back up.
- Some care must be taken to handle the case

of a crash occurring during the recovery
process!

