
CS	360	
Programming	Languages
Day	13	– Dynamic	Scope,	

Closure	Idioms

Lexical	scoping	vs dynamic	scoping
• The	alternative	to	lexical	scoping	is	called	dynamic	scoping.

• In	lexical	(static)	scoping,	if	a	function	f	references	a	non-local	variable	x,	the	
language	will	look	for	x	in	the	environment	where	f	was	defined.

• In	dynamic	scoping,	if	a	function	f	references	a	non-local	variable	x,	the	
language	will	look	for	x	in	the	environment	where	f	was	called.
– If	it's	not	found,	will	look	in	the	environment	that	called	the	function	that	

called	f	(and	so	on).

Example
• Assume	we	have	a	Python/C++-style	language.

• What	does	this	program	print	under	lexical	
scoping?

– 5,	5

• What	does	this	program	print	under	dynamic	
scoping?

– 5,	10

x = 5

def foo():
print(x)

def bar():
x = 10
foo()

foo()
bar()

Why	do	we	prefer	lexical	over	dynamic	scope?
1. Function	meaning	does	not	depend	on	variable	names	used.

Example:	Can	rename	variables	at	will,	as	long	as	you	are	consistent.
– Lexical	scope:	guaranteed	to	have	no	effects.

Dynamic	scope:	might	change	the	function	meaning.

When	the	anonymous	function	that	f returns	is	called,	in	lexical	scoping,	we	
always	know	where	the	values	of	x and	y	will	be	(what	frames	they're	in).		With	
dynamic	scoping,	x	will	be	searched	for	in	the	functions	that	called	the	
anonymous	function,	so	who	knows	what	frames	they'll	be	in.

(define (f x)
(lambda (y) (+ x y)))

Why	do	we	prefer	lexical	over	dynamic	scope?
1. Function	meaning	does	not	depend	on	variable	names	used.

Example:	Can	remove	unused	variables	in	lexical	scoping.
– Dynamic	scope:	May	change	meaning	of	a	function	(weird)

– You	would	never	write	this	in	a	lexically-scoped	language,	because	the	
binding	of	x	to	3	is	never	used.
• (No	way	for	g	to	access	this	particular	binding	of	x.)

– In	a	dynamically-scoped	language,	function	gmight	refer	to	a	non-local	
variable	x,	and	this	binding	might	be	necessary.

(define (f g)
(let ((x 3))
(g 2)))

Why	do	we	prefer	lexical	over	dynamic	scope?
2.		Easy	to	reason	about	functions	where	they're	defined.

Example:	Dynamic	scope	tries	to	add	a	string	to	a	number	
(b/c	in	the	call	to	(+	x	y),	x	will	be	"hello")

In	lexical	scope,	we	always	know	what	function	f	does	even	before	the	program	
is	compiled	or	run.

(define x 1)

(define (f y)
(+ x y))

(define (g)
(let ((x "hello"))
(f 4))

Why	do	we	prefer	lexical	over	dynamic	scope?
3. Closures	can	easily	store	the	data	they	need.

– Many	more	examples	and	idioms	to	come.

• The	anonymous	function	returned	by	gteq references	a	non-local	variable	x.

• In	lexical	scoping,	the	closure	created	for	the	anonymous	function	will	point	
to	gteq's frame	so	x	can	be	found.

• In	dynamic	scoping,	who	knows	what	x	would	be.		Makes	it	impossible	to	use	
this	functionality.

(define (gteq x) (lambda (y) (>= y x)))
(define (no-negs lst) (filter (gteq 0) lst))

Why	does	dynamic	scope	exist?
• Lexical	scope	for	variables	is	definitely	the	right	default.

– Very	common	across	languages.

• Dynamic	scope	is	occasionally	convenient	in	some	situations	(e.g.,	exception	
handling).
– So	some	languages	(e.g.,	Racket)	have	special	ways	to	do	it.
– But	most	don’t	bother.

• Historically,	dynamic	scoping	was	used	more	frequently	in	older	languages	
because	it's	easier	to	implement	than	lexical	scoping.
– Strategy:	Just	search	through	the	call	stack	until	variable	is	found.		No	

closures	needed.
– Call	stack	maintains	list	of	functions	that	are	currently	being	called,	so	

might	as	well	use	it	to	find	non-local	variables.

Iterators	made	better
• Functions	like	map and	filter are	muchmore	powerful	thanks	to	closures	

and	lexical	scope

• Function	passed	in	can	use	any	“private”	data	in	its	environment

• Iterator	(e.g.,	map	or	filter)	“doesn’t	even	know	the	data	is	there”
– It	just	calls	the	function	that	it's	passed,	and	that	function	will	take	care	

of	everything.

(define (gteq x) (lambda (y) (>= y x)))
(define (no-negs lst) (filter (gteq 0) lst))

More	idioms
• We	know	the	rules	for	lexical	scope	and	function	closures.

– Now	we'll	see	what	it's	good	for.

A	partial	but	wide-ranging	list:

• Pass	functions	with	private	data	to	iterators:	Done
• Currying	(multi-arg functions	and	partial	application)
• Callbacks	(e.g.,	in	reactive/event-driven	programming)
• Implementing	an	ADT	(abstract	data	type)	with	a	record	of	functions

Currying	and	Partial	Application
• Currying	is	the	idea	of	calling	a	function	with	

an	incomplete	set	of	arguments.

• When	you	"curry"	a	function,	you	get	a	
function	back	that	accepts	the	remaining	
arguments.

• Named	after	Haskell	Curry,	who	studied	
related	ideas	in	logic.		
– PL	Haskell	is	named	after	him.

Currying	and	Partial	Application:	Example
• We	know	(expt x y) raises	x to	the	y'th power.
• We	could	define	a	curried	version	of	expt like	this:
• (define (expt-curried x)

(lambda (y) (expt x y)))
• We	can	call	this	function	like	this:

((expt-curried 4) 2)
• This	is	useful	because	expt-curried is	now	a	function	of	a	single	

argument	that	can	make	a	family	of	"raise-this-to-some-power"	functions.
• This	is	critical	in	some	other	functional	languages	(though	not	Racket	or	

Scheme)	where	functions	may	have	at	most	one	argument.

Currying	and	Partial	Application
• Currying	is	still	useful	in	Racket	with	the	curry function:

– Takes	a	function	f and	(optionally)	some	arguments	a1, a2, ….
– Returns	an	anonymous	function	g that	accumulates	arguments	to	f until	

there	are	enough	to	call	f.

• (curry expt 4) returns	a	function	that	raises	4	to	its	argument.
– (curry expt 4) == expt-curried
– ((curry expt 4) 2) == ((expt-curried 4) 2)

• (curry * 2) returns	a	function	that	doubles	its	argument.
• These	can	be	useful	in	definitions	themselves:

– (define (double x) (* 2 x))
– (define double (curry * 2))

Currying	and	Partial	Application
• Currying	is	also	useful	to	shorten	longish	lambda	expressions:
• Old	way:	(map (lambda (x) (+ x 1)) '(1 2 3))
• New	way:	(map (curry + 1) '(1 2 3))

• Great	for	encapsulating	private	data:	(below,	list-ref	is	the	built-in	get-nth.)

(define get-month
(curry list-ref '(Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec)))

Currying	and	Partial	Application
• But	this	gives	zero-based	months:
• (define get-month

(curry list-ref
'(Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec)))

• Let's	subtract	one	from	the	argument	first:
(define get-month
(compose
(curry list-ref
'(Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec))

(curryr - 1)))

curryr curries	
from	right	to	left,	
rather	than	left	to	
right.

Currying	and	Partial	Application
• A	few	more	examples:

• (map (compose (curry + 2) (curry * 4)) '(1 2 3))
– quadruples	then	adds	two	to	the	list	'(1	2	3)

• (filter (curry < 10) '(6 8 10 12))
– Careful!	curry works	from	the	left,	so	(curry < 10) is	equivalent	

to	(lambda (x) (< 10 x)) so	this	filter	keeps	numbers	that	are	
greater	than	10.

• Probably	clearer	to	do:		
(filter (curryr > 10) '(6 8 10 12))

• (In	this	case,	the	confusion	is	because	we	are	used	to	"<"	being	an	infix	
operator).

Return	to	the	foldrJ
Currying	becomes	really	powerful	when	you	curry	higher-order	functions.

Recall	(foldr f init (x1 x2 … xn)) returns	
(f x1 (f x2 … (f xn-2 (f xn-1 (f xn init))

(define (sum-list-ok lst) (foldr + 0 lst))

(define sum-list-super-cool (curry foldr + 0)

Another	example
• Scheme	and	Racket	have	andmap and	ormap.
• (andmap f (x1 x2…)) returns	(and (f x1) (f x2) …)
• (ormap f (x1 x2…)) returns	(or (f x1) (f x2) …)

(andmap (curryr > 7) '(8 9 10)) è #t
(ormap (curryr > 7) '(4 5 6 7 8)) è #t
(ormap (curryr > 7) '(4 5 6)) è #f

(define contains7 (curry ormap (curry = 7)))
(define all-are7 (curry andmap (curry = 7)))

Another	example
Currying	and	partial	application	can	be	convenient	even	without	higher-order	
functions.
Note:	(range a b) returns	a	list	of	integers	from	a	to	b-1,	inclusive.

(define (zip lst1 lst2)
(if (null? lst1) '()

(cons (list (car lst1) (car lst2))
(zip (cdr lst1) (cdr lst2)))))

(define countup (curry range 1))

(define (add-numbers lst)
(zip (countup (length lst)) lst))

When	to	use	currying
• When	you	write	a	lambda	function	of	the	form

– (lambda (y1 y2 …) (f x1 x2 … y1 y2…))
• You	can	replace	that	with

– (curry f x1 x2 …)

• Similarly,	replace
– (lambda (y1 y2 …) (f y1 y2 … x1 x2…))

• with
– (curryr f x1 x2 …)

When	to	use	currying
• Try	these:

– Assuming	lst is	a	list	of	numbers,	write	a	call	to	filter that	keeps	all	
numbers	greater	than	4.

– Assuming	lst is	a	list	of	lists	of	numbers,	write	a	call	to	map that	adds	a	
1	to	the	front	of	each	sublist.

– Assuming	lst is	a	list	of	numbers,	write	a	call	to	map that	turns	each	
number	(in	lst)	into	the	list	(1	number).

– Assuming	lst is	a	list	of	numbers,	write	a	call	to	map that	squares	each	
number	(you	should	curry	expt).

– Define	a	function	dist-from-origin	in	terms	of	currying	a	function	(dist
x1 y1 x2 y2) [assume	dist is	already	defined	elsewhere]

• Hint:	Write	each	without	currying,	then	replace	the	lambda	with	a	curry.

Callbacks
A	common	idiom:	Library	takes	functions	to	apply	later,	when	an	event occurs	–
examples:

– When	a	key	is	pressed,	mouse	moves,	data	arrives
– When	the	program	enters	some	state	(e.g.,	turns	in	a	game)

A	library	may	accept	multiple	callbacks
– Different	callbacks	may	need	different	private	data	with	different	types
– (Can	accomplish	this	in	C++	with	objects	that	contain	private	fields.)

Mutable	state
While	it’s	not	absolutely	necessary,	mutable	state	is	reasonably	appropriate	
here

– We	really	do	want	the	“callbacks	registered”	and	“events	that	have	been	
delivered”	to	change due	to	function	calls

In	"pure"	functional	programming,	there	is	no	mutation.
– Therefore,	it	is	guaranteed that	calling	a	function	with	certain	arguments	

will	always	return	the	same	value,	no	matter	how	many	times	it's	called.
– Not	guaranteed	once	mutation	is	introduced.
– This	is	why	global	variables	are	considered	"bad"	in	languages	like	C	or	

C++	(global	constants	OK).

Mutable	state:	Example	in	C++
times_called = 0

int function() {
times_called++;
return times_called;

}

This	is	useful,	but	can	cause	big	problems	if	somebody	else	modifies	
times_called from	elsewhere	in	the	program.

Mutable	state
• Scheme	and	Racket's	variables	are	mutable.
• The	name	of	any	function	which	does	mutation	contains	a "!"
• Mutate	a	variable	with	set!

– Only	works	after	the	variable	has	been	placed	into	an	environment	with	
define,	let,	or	as	an	argument	to	a	function.

– set! does	not	return	a	value.
(define times-called 0)
(define (function)
(set! times-called (+ 1 times-called))
times-called)

• Notice	that	functions	that	have	side-effects	or	use	mutation	are	the	only	
functions	that	need	to	have	bodies	with	more	than	one	expression	in	them.

Example	Racket	GUI	with	callback
; Make a frame by instantiating the frame% class
(define frame (new frame% (label "Example")))
; Make a static text message in the frame
(define msg (new message% (parent frame)
(label "No events so far...")))

; Make a button in the frame
(new button% (parent frame)
(label "Click Me")
(callback (lambda (button event)

(send msg set-label
(number->string (function))))))

; Show the frame by calling its show method
(send frame show #t)

Example	Racket	GUI	with	callback
Key	code:

(new button% (parent frame)
(label "Click Me")
(callback (lambda (button event)

(send msg set-label
(number->string (function))))))

(define times-called 0)
(define (function)
(set! times-called (+ 1 times-called))
times-called)

Avoid	cluttering	the	global	frame
Key	code:

(new button% (parent frame2)
(label "Click Me")
(callback (let ((count-clicks 0))

(lambda (button event)
(set! count-clicks (+ 1 count-clicks))
(send msg2 set-label

(number->string count-clicks))))))

How	does	that	work?
• What	does	the	environment	diagram	for	these	look	like?

(define (f x)
(let ((y 1))
(lambda (y) (+ x y z))))

(define g
(let ((x 1))
(lambda (y) (+ x y))))

• This	idea	is	called	let-over-lambda.		Used	to	make	local	variables	in	a	function	
that	persist	between	function	calls.

Implementing	an	ADT
As	our	last	pattern,	closures	can	implement	abstract	data	types

– They	can	share	the	same	private	data
– Private	data	can	be	mutable	or	immutable	
– Feels	quite	a	bit	like	objects,	emphasizing	that	OOP	and	functional	

programming	have	similarities

The	actual	code	is	advanced/clever/tricky,	but	has	no	new	features
– Combines	lexical	scope,	closures,	and	higher-level	functions
– Client	use	is	not	so	tricky

(define (new-stack)
(let ((the-stack '()))
(define (dispatch method-name)
(cond ((eq? method-name 'empty?) empty?)

((eq? method-name 'push) push)
((eq? method-name 'pop) pop)
(#t (error "Bad method name"))))

(define (empty?) (null? the-stack))
(define (push item) (set! the-stack (cons item the-

stack)))
(define (pop)
(if (null? the-stack) (error "Can't pop an empty

stack")
(let ((top-item (car the-stack)))
(set! the-stack (cdr the-stack))
top-item)))

dispatch)) ; this last line is the return value
; of the let statement at the top.

