
Probabilistic generation of ragtime music from
classical melodies

Joel Michelson, Hong Xu, and Phillip B. Kirlin

Rhodes College, Department of Mathematics and Computer Science,
Memphis TN 38112, USA,

{micjp-17, xuho-17, kirlinp}@rhodes.edu

Abstract. This paper examines the computational problem of taking
a classical music composition and algorithmically recomposing it in a
ragtime style. Because ragtime music is distinguished from other musi-
cal genres by its distinctive syncopated rhythms, our work is based on
extracting the frequencies of rhythmic patterns from a large collection
of ragtime compositions. We use these frequencies in two different al-
gorithms that alter the melodic content of classical music compositions
to fit the ragtime rhythmic patterns, and then combine the modified
melodies with traditional ragtime bass parts, producing new composi-
tions which melodically and harmonically resemble the original music.
We evaluate these algorithms by examining the quality of the ragtime
music produced for eight excerpts of classical music alongside the output
of a third algorithm run on the same excerpts; results are derived from a
survey of 163 people who rated the quality of the ragtime output of the
three algorithms.

Keywords: algorithmic composition, ragtime, corpus-based study

1 Introduction

Ragtime is a musical genre that is best described by its syncopated, or ragged,
rhythms. Studies of ragtime compositional techniques have concluded that synco-
pation is the single unifying characteristic of the genre. Though widely assumed
to be a term only applied to piano music, ragtime encompasses a wide variety of
instrumentations, techniques, and styles [1]. Widespread conceptions and mis-
conceptions regarding the ragtime genre have recently led to the creation of a
corpus of digitized ragtime compositions in the MIDI file format [10] to enable
large-scale studies of the ragtime music. Not surprisingly, concurrent with the
development of this corpus and others like it is the rise of data-driven studies in
music informatics, with large-scale data sets being used to discover or confirm
trends and tendencies about classical and pop music alike. [6, 3]. In particular,
it is tempting to apply corpus techniques to the field of algorithmic composi-
tion in order to automatically extract the unifying characteristics of a musical
genre and apply those patterns in a new composition. This is the problem we
examine here: we test the feasibility of composing ragtime music based solely on



probabilistically applying rhythmic patterns extracted from a corpus of ragtime
music to existing classical compositions. Specifically, we develop two databases
of rhythmic patterns derived from a corpus of roughly 5,000 ragtime pieces and
propose two algorithms that alter the rhythms of existing classical melodies to
sound more like the ragtime rhythms in the databases. We evaluate these al-
gorithms through a survey of 163 people who rated the quality of the ragtime
music produced by these algorithms.

2 Methodology and Algorithms

The goal of this research is to study the feasibility of algorithmically composing
ragtime music based solely on realigning existing classical music melodies to fit
into ragtime rhythms. We algorithmically discover what rhythms are appropriate
in ragtime by using a previously-created corpus of ragtime compositions, known
as the RAG-collection, or the Rag-c data set. This data set is a collection of
11,591 MIDI files of ragtime music originally introduced by Volk and de Haas
[10] as a first effort in putting together a large-scale database of ragtime music.
These ragtime compositions were originally compiled and organized by a group
of ragtime music enthusiasts collaborating over the internet, and are sourced
from various original ragtime scores, from piano rolls translated into the MIDI
format, and from recordings of performances as well. Though the data set con-
tents vary in quality in terms of the MIDI translations, it is probably the most
comprehensive collection of ragtime music in a symbolic digitized format known.

RAG data

V1 pattern 
database

Beat 
induction

Melody 
extraction

V2 pattern 
database

Chord 
generator

Rhythm 
changerClassical 

composition
New ragtime 
composition

Preprocessing stage

Experimental stage

Fig. 1. Methodological setup

Figure 1 illustrates the components in our research setup, which broadly
consists of a preprocessing stage and an experimental stage. The goal of the
preprocessing stage is to create two databases of rhythmic patterns. We do this



by processing the Rag-c data set with a beat induction algorithm; this is a nec-
essary step as the MIDI files in the corpus do not contain enough information to
automatically discover rhythmic information such as time signatures or measure
boundaries. After the beat induction algorithm aligns the music metrically, we
extract the melodies as monophonic sequences of notes using a standard skyline
algorithm. This leaves us with a series of measures which we further process into
two rhythmic pattern databases.

The goal of the experimental stage is to allow one to transform an exist-
ing classical music composition into a ragtime composition. Beginning with a
classical music composition, we identify the monophonic main melody of the
composition and its harmonic chordal structure. We send the main melody to
the rhythm changer algorithms, which alter the metrical placement and duration
of the notes in the main melody — but not their ordering — to make the melody
sound more like ragtime. This is accomplished with the help of the information
in the rhythmic pattern databases. At the same time, we use the harmonic struc-
ture of the classical music to compose a prototypical ragtime bass line, which is
combined with the altered melody into a final composition in a ragtime style.

We give further details of each step of this process below.

2.1 Beat and measure detection

Though MIDI files can be encoded to include information such as time signature
and tempo, the files in the Rag-c data set are derived from a variety of sources,
including live performances, some of which do not encode these data. Therefore,
we use a version of Dixon and Cambouropoulos’s beat detection algorithm [4]
to estimate the locations of musical beats in the MIDI data.

The algorithm’s beat inducer operates by computing inter-onset intervals, or
IOIs — times between pairs of note onsets — for the input MIDI file and then
clustering them in the hope that small differences in the IOIs will be smoothed
out. The clusters are then ranked by size, and the top-ranked clusters usually
correspond to the inter-beat interval or a fraction thereof. With a correctly-
predicted inter-beat interval, measure boundaries can be easily calculated for
the entire piece.

In practice, however, the inter-beat interval predictions may be slightly mis-
calculated. We noticed a certain amount of “temporal drift” in the measure
boundary predictions for the Rag-c data set. Specifically, as one predicts mea-
sure boundaries further and further ahead in a MIDI file, the predicted bound-
aries deviate more and more from their true locations, most likely due to the
accumulation of small errors caused by a slightly miscalculated inter-beat inter-
val. To remedy this, we returned to the top-ranked clusters calculated by the
beat induction algorithm, and examined every possible inter-beat interval within
12 MIDI ticks of the cluster’s interval, calculated to the tenth of a tick. For every
potential inter-beat interval, we calculated the predicted measure boundaries for
that interval over the entire MIDI file, then binned all the notes of the MIDI file
according to which 16th note of the predicted measure they would fall into. For



correctly-predicted measure boundaries, we would expect this frequency distri-
bution of notes across the 16 bins to be weighted more heavily towards the bins
corresponding to strong beats, simply because it is more common — even in
ragtime — for notes to occur on strong beats. For incorrectly-predicted measure
boundaries, we would expect this distribution to be flatter. Therefore, we chose
the predicted set of measure boundaries that produced a frequency distribution
with the highest standard deviation as our correct measure boundaries.

2.2 Melody extraction and pattern database construction

We use an adapted version of Temperley’s streamer algorithm [8] to split the
Rag-c MIDI files into streams of notes. In order to isolate the main melodic
voice in each file, a skyline algorithm is used as described in [9, 10] to select a set
of notes from these streams using the average pitch of all the notes in a given
stream as its height.

Though the Rag-c data set contains over 11,000 MIDI files, we used a spe-
cific set of 5,176 for this project. We omitted all files with changing tempos —
mostly from live performances — because our algorithm for detecting measure
boundaries assumed a fixed tempo. Additionally, there were many excessively
long MIDI files — containing many repeats of sections of the music — that
could not be processed by the melody extraction algorithm due to memory lim-
itations.

Recall that our ultimate goal is to produce new ragtime music by realign-
ing classical music melodies to fit ragtime rhythms. In order to choose ragtime
rhythms appropriately during the algorithmic composition phase, we analyze
the rhythms of the melodies in the 5,176 MIDI files. We do this by assuming
all the ragtime compositions are in 2/4 or 4/4 time (a reasonable assumption
for ragtime), and segment each piece at the level of a 4/4 measure (merging
consecutive measures of 2/4 pieces). We represent the rhythm of each 4/4 mea-
sure using the method described in [10, 5]: the rhythm of a measure is described
by a pattern “I”s and “O”s specifying the locations of the note onsets at the
granularity of a 16th note: an “I” standing for an onset and “O” standing for
no onset at that time. For instance, a 4/4 measure with a quarter note on every
beat would be represented by the string “IOOOIOOOIOOOIOOO.” We refer to these
strings as binary onset patterns because their contents can be represented by 1s
and 0s instead of Is and Os.

Once every ragtime composition is converted into a sequence of binary onset
patterns, we create two rhythmic pattern databases, Version 1 (V1) and Version
2 (V2). The V1 database simply records the frequencies of every possible binary
onset pattern observed in the melodies of the 5,176 ragtime MIDI files. The
V2 database records the frequency of transitions between binary onset patterns
corresponding to every pair of adjacent measures in the corpus. In Section 3,
we describe some noteworthy facts that can be learned from examining the
information in the rhythmic pattern databases.



2.3 Experimental phase

The experimental phase is designed to harness the information in the pattern
databases in order to produce new ragtime compositions from classical music
files. For testing and evaluation, we use a set of eight excerpts of classical music.
These excerpts are taken from “Dance of the Sugar Plum Fairy” by Tchaikovsky;
“Eine kleine Nachtmusik,” by Mozart; Concerto No. 1 in E major, Op. 8, RV 269,
“Spring” by Vivaldi; three Christmas carols: “Deck the Halls”, “Hark! The Her-
ald Angels Sing”, “Jingle Bells”; and two traditional tunes: “Old MacDonald Had
a Farm” and “Yankee Doodle.” We chose these pieces for their easily-identified
melodies and duple meters.

We encoded the melody and harmony separately for these eight testing files
and used them as input to the chord generation and rhythm changing algorithms,
described next.

2.4 Chord generation

The chord generation algorithm generates a ragtime-style bass line consisting of
a sequence of chords. The input to the algorithm is a sequence of chord symbols,
in this case from one of the eight classical music excerpts which have had their
harmonies manually labeled. We turn these chord symbols into into ragtime-style
chord progressions based on a subset of the guidelines prescribed in [2]. We use a
straightforward algorithm: we choose octaves or single bass notes on the first and
third beats of a measure and chords on the second and fourth beats. The first
beat is always the root of the current harmony, and the third beat is always the
fifth. Additionally, we stochastically change some of the second- or fourth-beat
chords into passing tones if the surrounding harmonic structure allows for this
transformation. We found a probability of 1/6 works well for choosing whether
or not to insert a passing tone.

As an example, Figure 2 shows the bass line generated from the first eight
measures of the fourth movement of Beethoven’s Ninth Symphony (“Ode to
Joy”). Notice how there is a passing tone generated in the transition from the
end of measure 4 into measure 5.

Fig. 2. Illustration of chord generation for “Ode to Joy.” The chord symbols above the
staff are used as input, and the notes displayed are the output. Note the passing tone
in measure 4.



2.5 Rhythm changing algorithms

At the heart of this algorithmic composition system is the rhythm changing
algorithm. Recall that our goal is to adjust the rhythm of a classical melody to
fit a ragtime rhythm. We do this by identifying, for every measure of the classical
input composition, a corresponding ragtime measure with the same number of
notes, and altering the classical measure to fit the ragtime measure’s rhythm.
For example, consider Figure 3, which shows (on the top left) a measure of
music taken from the Christmas carol “Deck the Halls,” and also (on the top
right) a measure taken from the ragtime composition “The Entertainer,” by
Scott Joplin. The rhythm changer would combine these measures into the new
measure of music at the bottom of the figure, which aligns the notes of the “Deck
the Halls” melody with “The Entertainer”’s rhythm.

=
+

Fig. 3. An example of the rhythm-changing algorithm. We combine a classical melody
(top left) with a ragtime rhythm (top right), producing a new measure of ragtime-
sounding music (bottom).

We develop and evaluate two different strategies for using the rhythm changer
in conjunction with the V1 and V2 rhythmic pattern databases.

Recall that the V1 rhythm database simply stores the frequency of every
binary onset pattern in the corpus of ragtime MIDI files. Given a piece of classical
music as input, our goal is to probabilistically generate a set of rules that map
every binary onset pattern in the input music to a ragtime binary onset pattern,
to which we then apply the rhythm changer algorithm as described above. We
generate this set of rules by enumerating all the onset patterns in the input
classical composition on a measure-by-measure basis, and sorting them in order
of descending frequency. For every one of the classical onset patterns, we choose
a corresponding ragtime onset pattern proportionally to its frequency in the V1
database (keeping in mind that the number of onsets in the two patterns must be
equal), and then create a rule associating those two binary onset patterns. There
are two caveats. First, because un-syncopated rhythms (e.g. IOOOIOOOIOOOIOOO)
are so common in the data, rules that map an onset pattern to itself are never
permitted. Additionally, rules that would shift onsets by a total of more than
eight positions (where a position is an individual 16th note shift) are rewritten to
prevent drastic changes, such as a note at the beginning of a half measure being
shifted to the end of the measure. This technique is presented as Algorithm 1.



The strategy for using the V2 database is similar to that of the V1 database,
except we examine pairs of binary onset patterns in the classical input and in
the ragtime corpus. This technique is presented as Algorithm 2.

Algorithm 1 Version 1

for each unique binary onset pattern X in the input song do
Count the number of onsets in X
while a rule has not yet been generated do

Choose a random binary onset pattern Y with the same number of onsets in
the data set, weighted by its frequency
if Y 6= X and onset shifting distance from X to Y ≤ 8 then

Generate new rule X → Y
end if

end while
end for
for each measure in the input song with binary onset pattern X do

Generate measure in output song with note positions Y from the rule X → Y and
pitches from the original measure

end for

Algorithm 2 Version 2

for each unique binary pair of onset patterns X and its subsequent measure Y in
the input song do

Count the number of onsets in X and the number of onsets in Y
while a rule has not yet been generated do

Randomly select a transition Z from the transition table in which a measure
with count of X transitions into a measure with count Y
if Z 6= Y and onset shifting distance from Y to Z ≤ 8 then

Generate new rule Y → Z
end if

end while
end for
for each measure in the input song with binary onset pattern Y do

Generate measure in output song with note positions Y from the rule Y → Z and
pitches from the original measure

end for

2.6 Syncopalooza Rhythm Changer

To serve as a baseline algorithm, we implemented the Syncopalooza algorithm
as described in [7]. This algorithm is neither data- nor corpus-driven, but rather
manipulates the syncopations in a composition by shifting note onsets to stronger



or weaker metrical positions individually, rather than by rewriting an entire
measure of rhythm at once.

3 Results, Survey, and Evaluation

Some interesting results can be gleaned from the V1 pattern database which
records the frequency of every binary onset pattern in the 5,176 ragtime compo-
sitions. In general, the V1 database frequencies display a long-tailed distribution
as can be seen in Figure 4; the correspondence between the frequency of a pat-
tern and its rank in the list follows a power law relationship. Furthermore, the
most commonly-occurring binary onset patterns in ragtime music do not cor-
respond to syncopated rhythms at all, but rather to simple rhythms such as a
measure of two regularly-spaced half notes (the most frequent pattern), a mea-
sure with one whole note (the second-most frequent pattern), or a measure of
four regularly-spaced quarter notes (the third-most frequent pattern). Though
the data set contains 8,803 different binary onset patterns, these three patterns
account for roughly 11% of all the measures in the corpus. It is noteworthy that
the fourth-most common rhythm, with onsets on beats 1, 2, and 4 (but not 3),
displays the characteristic “short-long-short” pattern of note durations which is
especially prevelant in ragtime [5].

In order to evaluate the quality of the rhythm-changer algorithms presented
earlier, we conducted two separate surveys. The surveys differed in length and
in the participant demographics, but contained the same basic type of question.
Each question in the survey asked the participant to listen to three different
algorithmically-produced ragtime excerpts, one each derived from the V1 and
V2 databases paired with the rhythm-changer algorithm, and the third from the
Syncopalooza algorithm. The order of the three excerpts was randomized for
every question. After listening to each excerpt as many times as the participant
desired, they were asked how much they agreed with the statement “This excerpt
sounds like ragtime” for each of the three excerpts. Their answers were recorded
on a five-point Likert scale, with the choices of strongly disagree (1), disagree
(2), neither agree nor disagree (3), agree (4), and strongly agree (5).

The first survey was taken by 33 college undergraduates with some familiarity
with ragtime music. Each participant was asked to evaluate 6 sets of excerpts
(listening to 18 excerpts in total) according to the schema above. The second
survey was taken by 130 different people solicited from internet message board
about piano music.

The college students’ average responses to the questions on the Likert scale
were 3.50, 2.83, and 2.99 for Syncopalooza, V1, and V2, respectively; while the
internet users’ average responses were 3.36, 2.55, and 2.64, respectively. These
values indicate that while the college students rated the output of all three
algorithms slightly higher than the general internet population did, both groups
preferred Syncopalooza to the algorithms presented in this study, though by less
than one point. Furthermore, because even the best-performing algorithm —



Syncopalooza — did not surpass a 3.50 rating, there is clearly plenty of room
for improvement in the algorithms.

Figure 5 illustrates the survey results grouped by the classical music piece
used as input. We can see that Syncopalooza consistently outperforms both the
V1 and V2 algorithms, though there are cases where all three scores are clus-
tered closely together. It is also noteworthy that neither V1 nor V2 consistently
outperforms the other; their ratings are usually close together.

0 5000 10000 15000 20000 25000 30000 35000

IOOOOOOOIOOOOOOO

IOOOOOOOOOOOOOOO

IOOOIOOOIOOOIOOO

IOOOIOOOOOOOIOOO

OOOOOOOOIOOOOOOO

IOOOOOOOIOOOIOOO

IOOOIOOOIOOOOOOO

IOOOIOOOOOOOOOOO

IOOOOOOOOOOOIOOO

IOIOIOIOIOIOIOIO

OOOOIOOOIOOOIOOO

OOOOOIOOOOOOOOOO

IOOOOOOOOOOIOOOO

OOOOIOOOOOOOOOOO

IOOOOIOOOOOOOOOO

OOOOOOOOOOOOIOOO

OOOOOOOOOOOIOOOO

OOOOOOIOOOOOOOOO

OOOOIOOOOOOOIOOO

IOOOOOIOIOOOOOIO

Frequency of pattern

Fig. 4. This graph illustrates the frequencies of the 20 most common binary onset
patterns found in the ragtime corpus.

Anonymous comments solicited from the survey participants revealed some
of the reasons for their ratings. Multiple users noted some inconsistencies and
mismatches between the beats of the melody and the bass notes of the ac-
companiment. We believe this may be due to (1) the algorithms moving notes
that were originally consonant with their underlying harmonies to new metri-
cal locations that then become dissonant with the underlying harmonies; (2)
the algorithms choosing ragtime rhythmic patterns that, while technically com-
mon, do not “flow” with the preceding or following music; (3) beat induction
errors. Multiple users also commented on the low register of the accompaniment
chords; some thought this rendered the audio muddy and distracted from the
overall sound. We plan on investigating these issues fully in the next iteration
of this project.



1
1.5
2

2.5
3

3.5
4

4.5
5

deck eine hark jingle old spring sugar yankee

Sync V1 V2

1
1.5
2

2.5
3

3.5
4

4.5
5

deck eine hark jingle old spring sugar yankee

Sync V1 V2

Fig. 5. Survey responses from college undergraduates (top), and internet respondents
(bottom), separated by classical input composition and by ragtime algorithm (Synco-
palooza, rhythm shifter version 1, rhythm shifter version 2). Participants were asked
how much they agreed that the output music sounded like ragtime.



References

1. Berlin, E.A.: Ragtime. In: Grove Music Online. Ox-
ford Music Online. Oxford University Press (March 2017),
http://www.oxfordmusiconline.com/subscriber/article/grove/music/A2252241,
web

2. Bradlee, S.: Ragtimify: How to Turn Any Song into Ragtime and Stride Piano.
Scott Bradlee (2013)

3. de Clercq, T., Temperley, D.: A corpus analysis of rock harmony. Popular Music
30(1), 47–70 (2011)

4. Dixon, S., Cambouropoulos, E.: Beat tracking with musical knowledge. In: Pro-
ceedings of the 14th European Conference on Artificial Intelligence. pp. 626–630
(2000)

5. Koops, H.V., Volk, A., de Haas, W.B.: Corpus-based rhythmic pattern analysis of
ragtime syncopation. In: Proceedings of the 16th International Society for Music
Information Retrieval Conference. pp. 483–489 (2015)

6. Rohrmeier, M., Cross, I.: Statistical properties of tonal harmony in Bach’s chorales
pp. 619–627 (2008)

7. Sioros, G., Miron, M., Cocharro, D., Guedes, C., Gouyon, F.: Syncopalooza: Ma-
nipulating the syncopation in rhythmic performances. In: Proceedings of the 10th
International Symposium on Computer Music Multidisciplinary Research. pp. 454–
469 (2013)

8. Temperley, D.: A unified probabilistic model for polyphonic music analysis. Journal
of New Music Research 38(1), 3–18 (Mar 2009)

9. Uitdenbogerd, A.L., Zobel, J.: Manipulation of music for melody matching. In:
ACM Multimedia. pp. 235–240 (1998)

10. Volk, A., de Haas, W.B.: A corpus-based study on ragtime syncopation. In: Pro-
ceedings of the 13th International Society for Music Information Retrieval Confer-
ence. pp. 163–168 (2013)


