
T2A2 2:00 Proceedings of the 2001 IEEE
 Workshop on Information Assurance and Security
 United States Military Academy, West Point, NY, 5-6 June, 2001

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 85

Abstract—In this paper we introduce the Hierarchical
Intrusion DEtection (HIDE) system, which detects network-based
attacks as anomalies using statistical preprocessing and neural
network classification. We describe our system architecture and
the statistical preprocessing technique and components. We tested
five different types of neural network classifiers: Perceptron,
Backpropagation (BP), Perceptron-backpropagation-hybrid
(PBH), Fuzzy ARTMAP, and Radial-based Function. Our results
indicate that BP and PBH provide more efficient classification for
our data than the alternatives. We also stress-tested the entire
system, which showed that HIDE can reliably detect UDP
flooding attacks with attack intensity as low as five to ten percent
of background traffic.

Index Terms—Network Security, Intrusion Detection,
Anomaly Detection, Statistical Preprocessing, Neural Network
Classification, IDS, IDA, HIDE.

I. INTRODUCTION
The ubiquity of the Internet poses serious concerns on the

security of computer infrastructures and the integrity of
sensitive data. Network intrusion detection aims to protect
networks and computers from malicious network-based
attacks. The underlying assumption of intrusion detection is
that an attack will noticeably affect system performance or
behavior. Intrusion detection techniques can be partitioned
into two complementary approaches: misuse detection, and
anomaly detection. Misuse detection systems, such as [1][2],
model the known attacks and scan the system data for
occurrences of these patterns. Anomaly detection systems, such
as [3], [7], flag intrusions by observing significant deviations
from typical or expected behavior of the system or users.

Statistical modeling followed with classical or neural
network classification have been utilized in some anomaly
intrusion detection systems. For example, NIDES [3]
represents user or system behaviors by a set of statistical

variables and detects the deviation between the observed and
the standard activities. A system that identifies intrusions using
packet filtering and neural networks was introduced in [4]. The
work of Ghosh et al [7] studied the employment of neural
network classifiers to detect anomalous and unknown
intrusions against a software system. In [12], Kolmogorov-
Smirnov statistics was used to model and detect Denial-of-
Service and Probing attacks.

We proposed the Hierarchical Intrusion DEtection (HIDE)
system in [8]. HIDE is an anomaly network intrusion detection
system, with hierarchical architecture, that uses statistical
models and neural network classifiers to detect attacks. Here,
we report our experimental results of the performance of five
different types of neural networks, as well as the results of
traffic intensity stress-testing on HIDE.

The rest of the paper is organized as follows. The system
architecture of HIDE is outlined in Section 2. Section 3
introduces the statistical model that we are using. Section 4
provides the five neural networks we tested. The simulation
environment is described in Section 5. The experimental
results using neural network classifiers are presented in section
6. Section 7 reports the stress-testing results on HIDE. Section
8 draws some conclusions and outlines future work.

II. SYSTEM ARCHITECTURE
Our system is a distributed hierarchical application, which

consists of several tiers with each tier containing several
Intrusion Detection Agents (IDAs). IDAs are IDS components
that monitor the activities of a host or a network. Different
tiers correspond to different network scopes that are protected
by agents affiliated to them.

HIDE: a Hierarchical Network Intrusion
Detection System Using Statistical
Preprocessing and Neural Network

Classification
Zheng Zhang, Jun Li, C.N. Manikopoulos, Jay Jorgenson, Jose Ucles

ECE Department, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
Department of Mathematics, CCNY, Convent Ave. at 138 ST., New York, NY 100031, USA

Network Security Solutions, 15 Independence Blvd. 3rd FL., Warren, NJ 07059, USA
zxz9622@njit.edu, jxl1727@njit.edu, manikopoulos@adm.njit.edu, jjorgenson@mindspring.com

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 86

Ethernet
ID Monitor Bridge

Security Department

Ethernet

ID Monitor

IDC

ServerBridge

Department 1

Ethernet

ID Monitor

IDC

Server Bridge

Switch

Router

Internet

Department 1

Firewall

Fig. 1 Sample Network

For the sample network shown in Fig. 1, the intrusion
detection system can be divided into 3 tiers. Tier 1 agents
monitor system activities of the servers and bridges within a
department and periodically generate reports for Tier 2 agents.
Tier 2 agents detect the network status of a departmental LAN
based on the network traffic that they observe as well as the
reports from the Tier 1 agents within the LAN. Tier 3 agents
collect data from the Tier 1 agents at the firewall and the
router as well as data of Tier 2 agents. The system hierarchy is
shown in Fig. 2.

Department 2

I DC

Server

ID Monitor

Bridge

IDC

Server

ID Monitor

Bridge Router

ID Monitor

Department 1

Security
Department

Tier 1

Tier 2

Tier 3

Firewall

Fig. 2 System Hierarchy

Because this system is distributed and hierarchical, the IDAs
of all tiers have the same structure. A diagram of an IDA is
illustrated in Fig. 3, which consists of the following
components: the probe, the event preprocessor, the statistical
processor, the neural network classifier and the post processor.
The functionalities of these components are described as
below:

Probe Event Preprocessor

Reports from IDAs of
lower tiers

Network
Traffic

Statistical Processor

Neural Network
Classifier

Post Processor To User
Interface

To Higher Tier

Fig. 3 Intrusion Detection Agent

• Probe: Collects the network traffic of a host or a network,

abstracts the traffic into a set of statistical variables to
reflect the network status, and periodically generates
reports to the event preprocessor.

• Event Preprocessor: Receives reports from both the probe
and IDAs of lower tiers, and converts the information into
the format required by the statistical model.

• Statistical Processor: Maintains a reference model of the
typical network activities, compares the reports from the
event preprocessor to the reference models, and forms a
stimulus vector to feed into the neural network classifiers.
We will further discuss the statistical algorithms in
Section 3.

• Neural Network Classifier: Analyzes the stimulus vector
from the statistical model to decide whether the network
traffic is normal or not. Section 4 will introduce the neural
network classifiers used in the system in detail.

• Post Processor: Generates reports for the agents at higher
tiers. At the same time, it may display the results through a
user interface.

III. STATISTICAL MODEL
Statistical methods have been used in anomaly intrusion

detection systems [3]; however, most of these systems simply
measure the means and the variances of some variables and
detect whether certain thresholds are exceeded. SRI’s NIDES
[5][3] developed a more sophisticated statistical algorithm by
using a χ2-like test to measure the similarity between short-
term and long-term profiles. Our current statistical model uses
a similar algorithm as NIDES but with major modifications.
Therefore, we will first briefly introduce some basic
information about the NIDES statistical algorithm.

In NIDES, user profiles are represented by a number of
probability density functions. Let S be the sample space of a
random variable and events E1, E2,…, Ek a mutually exclusive
partition of S. Assume Pi is the expected probability of the

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 87

occurrence of the event Ei, and let Pi
’ be the frequency of the

occurrence of Ei during a given time interval. Let N denote the
total number of occurrences. NIDES statistical algorithm used
a χ2-like test to determine the similarity between the expected
and actual distributions through the statistic:

∑
=

−
×=

k

i i

ii

P
PP

NQ
1

2')(

When N is large and the events E1,E2,…,Ek are independent,
Q approximately follows a χ2 distribution with)1(−k degrees
of freedom. However in a real-time application the above two
assumptions generally cannot be guaranteed, thus, empirically,
Q may not follow a χ2 distribution. NIDES solved this
problem by building an empirical probability distribution for
Q, which is updated daily in a real-time operation.

In our system, since we are using a neural network classifier
to identify possible intrusions, we are not so concerned with
the actual distribution of Q. However, because network traffic
is not stationary and network-based attacks may have different
time durations, varying from a couple of seconds to several
hours or longer, we need an algorithm which is capable of
efficiently monitoring network traffic with different time
windows. Based on the above observations, we used a layer-
window statistical model, Fig. 4, with each layer-window
corresponding to a monitoring time slice of increasing size.

The newly arrived events will first be stored in the event
buffer of layer 1. The stored events are compared with the
reference model of that layer and the results are then fed into
the neural network classifier to decide the network status
during that time window. The event buffer will be emptied
once it becomes full, and the stored events will be averaged
and forwarded to the event buffer of layer 2. This process will
be repeated recursively until the top level is reached where the
events will simply be dropped after processing.

Event Buffer Reference
Model

Event
Report

Event Buffer Reference
Model

Event Buffer Reference
ModelLayer-Window M

Layer-Window 2

Layer-Window 1

...

Fig. 4 Statistical Model

The similarity-measuring algorithm that we are using is
shown below:

)]().[('

11

' max ii

k

i

k

i
ii ppppNfQ −+−=

==
∑

where f(N) is a function that takes into account the total
number of occurrences during a time window.

Besides similarity measurements, we also designed an
algorithm for the real-time updating of the reference model.
Let

oldp be the reference model before updating,
newp be the

reference model after updating, and
obsp be the observed user

activity within a time window. The formula to update the
reference model is

oldobsnew pspsp ××−+××=)1(αα
in which α is the predefined adaptation rate and s is the

value generated by the output of the neural network. Assume
that the output of the neural network classifier is a continuous
variable t between –1 and 1, where –1 means intrusion with
absolute certainty and 1 means no intrusion again with
complete confidence. In between, the values of t indicate
proportionate levels of certainty. The function for calculating
s is

 ≥

=
otherwise ,0

0 if , tt
s

Through the above equations, we ensured that the reference
model would be updated actively for typical traffic while kept
unchanged when attacks occurred. The attack events will be
diverted and stored, as attack scripts, for future neural network
learning.

IV. NEURAL NETWORK CLASSIFIERS

(a) Perceptron

x1

x2

xN-1

xN

Inputs

Threshold
θ

Output
y

Input
Layer

Hidden
Layer

Output
Layer

Input
Layer

Hidden
Layer

Output
Layer

C1x1

x2

xP-1

xP

Input
Layer

Complement
Layer

Catergory
Layer

C2

C2P

Output
Layer

Fuzzy ART

Error Signal

G

Gx1

x2

xP-1

xP

G

Input
Layer

Hidden Layer
of Green's
Functions

Output
Layer

(b) BP (c) PBH

(d) Fuzzy ARTMAP (e) RBF
Fig. 5 Neural Network Architectures

Neural networks are widely considered as an effective

approach to classify patterns. However the high computation
requirements and the long training cycles have hindered their
applications. In [4][7], BP neural networks were used to detect
anomalous user activities. In [8], we deployed a hybrid neural
network paradigm [6], called perceptron-backpropagation-
hybrid (or PBH) network, which is a superposition of a
perceptron and a small backpropagation network. In order to
comprehensively investigate the performances of neural
networks, we examined five different types of neural networks:
Perceptron, BP, PBH, Fuzzy ART MAP and RBF.

The perceptron [9], Fig. 5(a), is the simplest form of a

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 88

neural network used for the classification of linearly separable
patterns. It consists of a single neuron with adjustable synapses
and threshold. Although our data sets will not, in general, be
linearly separable, we are using the perceptron as a baseline to
measure the performances of other neural networks.

The Backpropagation network [9], or BP, Fig. 5(b), is a
multiplayer feedforward network, which contains an input
layer, one or more hidden layers, and an output layer. BPs
have strong generalization capabilities and have been applied
successfully to solve a variety of difficult and diverse
problems. Here we tested BP networks with the number of
hidden neurons ranging from 2 to 8.

The Perceptron-backpropagation hybrid network [6], or
PBH, Fig. 5(c), is a superposition of a perceptron and a small
backpropagation network. PBH networks are capable of
exploring both linear and nonlinear correlations between the
input stimulus vectors and the output values. We tested PBH
networks where the number of hidden neurons ranged from 1
to 8.

The Fuzzy ARTMAP [10] in its most general form is a
system of two Fuzzy ART networks ARTa and ARTb whose F2
layers are connected by a subsystem referred to as a “match
tracking system”. We are using a simplified version of Fuzzy
ARTMAP [11], Fig. 5(d), which is implemented for
classification problems. We tested ARTMAP networks with
the number of category neurons ranging from 2 to 8.

The Radial-basis function network [9], or RBF, Fig. 5(e),
involves three entirely different layers. The input layer is made
up of source nodes. The second layer is a hidden layer of high
enough dimension, which serves a different purpose from that
in a BP network. The output layer supplies the response of the
network to the activation patterns applied to the input layer.
We tested RBF networks with hidden neurons ranging from 2
to 8.

V. THE SIMULATION ENVIRONMENT
We used a virtual network using simulation tools to generate

attack scenarios. The experimental testbed that we built using
OPNET, a powerful network simulation facility, is shown in
Fig. 6. The testbed is a 10-BaseX LAN that consists of 11
workstations and 1 server.

UDP flooding attacker wkstn_1 wkstn_3 wkstn_5 wkstn_7 wkstn_9

wkstn_0 wkstn_2 wkstn_4 wkstn_6 wkstn_8 Svr_0

Fig. 6 Simulation Testbed

We simulated the udp flooding attack within the testbed. To
extensively test the performances of neural networks, we ran
four independent scenarios with different typical traffic loads
and attack traffic. For each simulation scenario, we collected
10,000 records of network traffic. We divided these data into
two separate sets, one set of 6000 records for training and the

other of 4000 records for testing. In each scenario, the system
was trained for 100 epochs.

VI. RESULTS ON NEURAL NETWORKS
We evaluated the performances of each of the neural

networks based on the mean squared root errors and the
misclassification rates of the outputs. The misclassification
rate is defined as the percentage of the inputs that are
misclassified by neural networks during one epoch, which
includes both false positive and false negative
misclassifications.

Table 1 lists the traffic loads of the four simulation
scenarios we ran for neural network testing.

TABLE 1 TRAFFIC LOADS OF THE FOUR SIMULATION SCENARIOS

 Background Traffic Attack Traffic
Scenario 1 600kbps 50kbps
Scenario 2 600kbps 100kbps
Scenario 3 2Mbps 50kbps
Scenario 4 2Mbps 100kbps

In the rest of this section, we will present and analyze the

simulation results of the neural networks one by one.
1) Perceptron

The mean squared root errors and the misclassification rates
of the perceptrons within the four simulation scenarios are
tabulated in Table 2.

TABLE 2 THE SIMULATION RESULTS OF PERCEPTRONS

 MSR Error Misclassification rate
Scenario 1 0.686 0.167
Scenario 2 0.716 0.202
Scenario 3 0.739 0.234
Scenario 4 0.635 0.119

We can see that the perceptron performed poorly in all the

four scenarios: Mean squared root errors are between 0.6 and
0.7; and misclassification rates are between 0.1 and 0.2. Both
the MSR errors and the misclassification rates are
unacceptably high for an IDS.

2) Fuzzy ARTMAP and RBF
The results of Fuzzy ARTMAP and RBF nets are shown in

Fig. 7 and Fig. 8. The x-axis values of the figures represent the
number of category neurons in Fuzzy ARTMAP and the
hidden neurons in RBF. The y-axis values represent the lowest
Mean Squared Root Errors and the lowest Misclassification
Rates that these neural nets achieved within the 100 epochs.

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 89

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

of category neurons

M
SR

 E
rro

r
scenario 1
scenario 2
scenario 3
scenario 4

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

of category neurons

M
is

cl
as

si
fic

at
io

n
R

at
e scenario 1

scenario 2
scenario 3
scenario 4

Fig. 7 Results of Fuzzy ARTMAP

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

of hidden neurons

M
SR

 E
rro

r

scenario 1
scenario 2
scenario 3
scenario 4

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

of hidden neurons

M
is

cl
as

si
fic

at
io

n
R

at
e

scenario 1
scenario 2
scenario 3
scenario 4

Fig. 8 Results of RBF

From the above figures, we can see that, as the number of
hidden neurons increases, the performances of both ARTMAP
and RBF networks improve. In most of the cases, both of them
outperformed the perceptron.

3) BP and PBH

The results of BP nets are illustrated in Fig. 9 and Fig. 10.
The figures indicate that BP and PBH networks have similar
performances, and that both neural networks consistently
perform better than the other three types of neural networks.
The curves in these figures are flat: the MSR errors and
misclassification rates do not decrease as the number of hidden
neurons increases. We believe the reason is that, because we
only deployed one attacking technique, UDP flooding attack,
in our simulations, our data sets are too simple and not
challenging enough for BP and PBH.

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

of hidden neurons

M
SR

 E
rro

r scenario 1
scenario 2
scenario 3
scenario 4

2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

of hidden neurons

M
is

cl
as

si
fic

at
io

n
R

at
e

scenario 1
scenario 2
scenario 3
scenario 4

Fig. 9 Results of BP

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

of hidden neurons
M

S
R

 E
rro

r

scenario 1
scenario 2
scenario 3
scenario 4

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

of hidden neurons

M
is

cl
as

si
fic

at
io

n
R

at
e

scenario 1
scenario 2
scenario 3
scenario 4

Fig. 10 Results of PBH

In the future, we will incorporate more types of Denial-of-
Service attacking techniques into our simulation, thus
providing additional tests, and possibly greater challenges, for
the neural networks under consideration.

VII. STRESS TESTING THE HIDE SYSTEM
In this section, we will stress test the sensitivity, and thus

effectiveness, of HIDE. We simulated various UDP flooding
attack scenarios using the test bed we introduced in section 5.
The traffic loads of the simulations we ran for stress testing are
specified in Table 3. From section 6, we can see that BP and
PBH performed the best among the five neural networks
tested, and that, for these two neural networks, increment in
the number of hidden neurons did little to help with their
performances. Therefore, the neural network that we chose for
stress testing was a BP network with 2 hidden neurons.

TABLE 3 THE TRAFFIC LOADS FOR STRESS TESTING
Background traffic Attack Traffic
600 Kbps 10Kbps, 20Kbps, 30Kbps, 40Kbps,

50Kbps, 70Kbps, 100Kbps, 200Kbps
2Mbps 10Kbps, 50Kbps, 150Kbps, 200Kbps

Through the simulations, we expect to see the changes in the

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 90

Mean Squared Root Errors and the Misclassification Rates of
the system as functions of the background traffic and attack
traffic volumes.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Attack traffic (kbps)

M
SR

 E
rro

r

Back traffic 600kbps
Back traffic 2Mbps

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Attack traffic (kbps)

M
is

cl
as

si
fic

at
io

n
Ra

te Back traffic 600kbps
Back traffic 2Mbps

Fig. 11 The results of Stress Testing

The results of stress testing are shown in Fig. 11. From the

figure, we can see that both the MSR errors and the
misclassification rates decrease as the attack level increases.
This is because that traffic patterns of higher-volume attacks
yield greater differences from the reference model than the
differences created by lower-volume attacks. We can also
notice that, for a certain attack level, the performance for the
600Kbps background traffic is consistently better than that of
the 2Mbps background. One plausible explanation is that
intruders can cover their behavior patterns from being detected
under high background traffic scenarios more easily.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False alarm rate (background traffic 600kbps)

D
et

ec
tio

n
ra

te a10k
a30k
a50k
a70k
a100k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False alarm rate (background traffic 2Mbps)

De
te

ct
io

n
ra

te

a10k
a50k
a100k

Fig. 12 ROC Curves

Fig. 12 shows the ROC (Receiver Operating Characteristic)
curves of some selected simulation scenarios. The x-axis of the
figure is the false alarm rate, which is the rate of the typical
traffic events being classified as intrusions; the y-axis of the
figure is the detection rate, which is calculated as the ratio
between the number of correctly detected intrusions and the
total number of intrusions. For each curve, the point at the
upper left corner represents the optimal detection with high
detection rate and low false alarm rate. From the figure, we
can observe the same tendency as in Fig. 11: The detection

performance improves as the attack intensity increases. In fact,
we can see that, when the attack level is 70Kbps for 600Kbps
background traffic and 100Kbps for 2Mbps background
traffic, the system performance approaches the optimum.

VIII. CONCLUSIONS
In this paper, we introduced the framework of HIDE, a

hierarchical anomaly network intrusion detection system using
statistical preprocessing and neural network classification. We
described our experiments using five different neural
networks. The results showed that BP and PBH nets
outperform Perceptron, Fuzzy ARTMAP and RBF. Thus,
classification capabilities of BP and PBH are more desirable
for statistical anomaly intrusion detection systems. We also
presented some of the results of stress testing. The results
indicate that the system is very efficient. It can reliably detect
UDP flooding attacks with traffic intensity as low as five to ten
percent of the background intensity.

ACKNOWLEDGEMENTS
Our research was partially supported by a Phase I SBIR

contract with US Army. We would also like to thank OPNET
Technologies, Inc.TM, for providing support for the OPNET
simulation software.

REFERENCES:
[1] G. Vigna, R. A. Kemmerer, “NetSTAT: a network-based Intrusion

Detection Approach”, Proceedings of 14th Annual Computer Security
Applications Conference, 1998, pp. 25 –34.

[2] W. Lee, S. J. Stolfo, K. Mok, “A Data Mining Framework for Building
Intrusion Detection Models”, Proceedings of 1999 IEEE Symposium of
Security and Privacy, pp. 120-132.

[3] A. Valdes, D. Anderson, “Statistical Methods for Computer Usage
Anomaly Detection Using NIDES”, Technical report, SRI International,
January 1995.

[4] J. M. Bonifacio, et al., “Neural Networks Applied in Intrusion Detection
System”, IEEE, 1998, pp. 205-210

[5] H. S. Javitz, A. Valdes, “The NIDES Statistical Component: Description
and Justification”, Technical report, SRI International, March 1993.

[6] R. M. Dillon, C. N. Manikopoulos, “Neural Net Nonlinear Prediction
for Speech Data”, IEEE Electronics Letters, Vol. 27, Issue 10, May
1991, pp. 824-826.

[7] A.K. Ghosh, J. Wanken, F. Charron, “Detecting Anomalous and
Unknown Intrusions Against Programs”, Proceedings of IEEE 14th
Annual Computer Security Applications Conference, 1998, pp. 259 –
267

[8] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, J. Ucles, “A
Hierarchical Anomaly Network Intrusion Detection System Using
Neural Network Classification”, CD-ROM Proceedings of 2001 WSES
International Conference on: Neural Networks and Applications (NNA
’01), Feb. 2001

[9] Simon Haykin, Neural Network A Comprehensive Foundation,
Macmillan College Publishing Company, 1994

[10] G.A. Carpenter, et al, “Fuzzy ARTMAP: An adaptive resonance
architecture for incremental learning of analog maps”, International
Joint Conference on Neural Networks, June 1992

[11] NeuraWare Inc., Neural Computing A Technology Handbook for
NeuralWorks Professional II/PLUS and Neural Works Explorer,
NeuralWare Inc., 1998

[12] Joao B.D. Cabrera, B. Bavichandran, R.K. Mehra, “Statistical Traffic
Modeling for Network Intrusion Detection”, Proceedings of 8th
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication systems, Aug. 2000, pp. 466-473

