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Abstract—In this paper we introduce the Hierarchical 
Intrusion DEtection (HIDE) system, which detects network-based 
attacks as anomalies using statistical preprocessing and neural 
network classification. We describe our system architecture and 
the statistical preprocessing technique and components. We tested 
five different types of neural network classifiers: Perceptron, 
Backpropagation (BP), Perceptron-backpropagation-hybrid 
(PBH), Fuzzy ARTMAP, and Radial-based Function. Our results 
indicate that BP and PBH provide more efficient classification for 
our data than the alternatives. We also stress-tested the entire 
system, which showed that HIDE can reliably detect UDP 
flooding attacks with attack intensity as low as five to ten percent 
of background traffic. 
 

Index Terms—Network Security, Intrusion Detection, 
Anomaly Detection, Statistical Preprocessing, Neural Network 
Classification, IDS, IDA, HIDE.  
 

I. INTRODUCTION 
The ubiquity of the Internet poses serious concerns on the 

security of computer infrastructures and the integrity of 
sensitive data. Network intrusion detection aims to protect 
networks and computers from malicious network-based 
attacks. The underlying assumption of intrusion detection is 
that an attack will noticeably affect system performance or 
behavior. Intrusion detection techniques can be partitioned 
into two complementary approaches: misuse detection, and 
anomaly detection. Misuse detection systems, such as [1][2], 
model the known attacks and scan the system data for 
occurrences of these patterns. Anomaly detection systems, such 
as [3], [7], flag intrusions by observing significant deviations 
from typical or expected behavior of the system or users.  

Statistical modeling followed with classical or neural 
network classification have been utilized in some anomaly 
intrusion detection systems. For example, NIDES [3] 
represents user or system behaviors by a set of statistical 

 
 

variables and detects the deviation between the observed and 
the standard activities. A system that identifies intrusions using 
packet filtering and neural networks was introduced in [4]. The 
work of Ghosh et al [7] studied the employment of neural 
network classifiers to detect anomalous and unknown 
intrusions against a software system. In [12], Kolmogorov-
Smirnov statistics was used to model and detect Denial-of-
Service and Probing attacks. 

We proposed the Hierarchical Intrusion DEtection (HIDE) 
system in [8]. HIDE is an anomaly network intrusion detection 
system, with hierarchical architecture, that uses statistical 
models and neural network classifiers to detect attacks.  Here, 
we report our experimental results of the performance of five 
different types of neural networks, as well as the results of 
traffic intensity stress-testing on HIDE. 

The rest of the paper is organized as follows. The system 
architecture of HIDE is outlined in Section 2. Section 3 
introduces the statistical model that we are using. Section 4 
provides the five neural networks we tested. The simulation 
environment is described in Section 5. The experimental 
results using neural network classifiers are presented in section 
6. Section 7 reports the stress-testing results on HIDE. Section 
8 draws some conclusions and outlines future work. 

II. SYSTEM ARCHITECTURE 
Our system is a distributed hierarchical application, which 

consists of several tiers with each tier containing several 
Intrusion Detection Agents (IDAs). IDAs are IDS components 
that monitor the activities of a host or a network. Different 
tiers correspond to different network scopes that are protected 
by agents affiliated to them.  
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Fig. 1 Sample Network 
 

For the sample network shown in Fig. 1, the intrusion 
detection system can be divided into 3 tiers. Tier 1 agents 
monitor system activities of the servers and bridges within a 
department and periodically generate reports for Tier 2 agents. 
Tier 2 agents detect the network status of a departmental LAN 
based on the network traffic that they observe as well as the 
reports from the Tier 1 agents within the LAN. Tier 3 agents 
collect data from the Tier 1 agents at the firewall and the 
router as well as data of Tier 2 agents. The system hierarchy is 
shown in Fig. 2. 
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Fig. 2 System Hierarchy 
 

Because this system is distributed and hierarchical, the IDAs 
of all tiers have the same structure. A diagram of an IDA is 
illustrated in Fig. 3, which consists of the following 
components: the probe, the event preprocessor, the statistical 
processor, the neural network classifier and the post processor. 
The functionalities of these components are described as 
below: 
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Fig. 3 Intrusion Detection Agent 

 
•  Probe: Collects the network traffic of a host or a network, 

abstracts the traffic into a set of statistical variables to 
reflect the network status, and periodically generates 
reports to the event preprocessor. 

•  Event Preprocessor: Receives reports from both the probe 
and IDAs of lower tiers, and converts the information into 
the format required by the statistical model. 

•  Statistical Processor: Maintains a reference model of the 
typical network activities, compares the reports from the 
event preprocessor to the reference models, and forms a 
stimulus vector to feed into the neural network classifiers. 
We will further discuss the statistical algorithms in 
Section 3. 

•  Neural Network Classifier: Analyzes the stimulus vector 
from the statistical model to decide whether the network 
traffic is normal or not. Section 4 will introduce the neural 
network classifiers used in the system in detail. 

•  Post Processor: Generates reports for the agents at higher 
tiers. At the same time, it may display the results through a 
user interface. 

III. STATISTICAL MODEL 
Statistical methods have been used in anomaly intrusion 

detection systems [3]; however, most of these systems simply 
measure the means and the variances of some variables and 
detect whether certain thresholds are exceeded. SRI’s NIDES 
[5][3] developed a more sophisticated statistical algorithm by 
using a χ2-like test to measure the similarity between short-
term and long-term profiles. Our current statistical model uses 
a similar algorithm as NIDES but with major modifications. 
Therefore, we will first briefly introduce some basic 
information about the NIDES statistical algorithm. 

In NIDES, user profiles are represented by a number of 
probability density functions. Let S be the sample space of a 
random variable and events E1, E2,…, Ek a mutually exclusive 
partition of S. Assume Pi is the expected probability of the 
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occurrence of the event Ei, and let Pi
’ be the frequency of the 

occurrence of Ei during a given time interval. Let N denote the 
total number of occurrences. NIDES statistical algorithm used 
a χ2-like test to determine the similarity between the expected 
and actual distributions through the statistic: 
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When N is large and the events E1,E2,…,Ek are independent, 
Q approximately follows a χ2 distribution with )1( −k degrees 
of freedom. However in a real-time application the above two 
assumptions generally cannot be guaranteed, thus, empirically, 
Q may not follow a χ2 distribution. NIDES solved this 
problem by building an empirical probability distribution for 
Q, which is updated daily in a real-time operation. 

In our system, since we are using a neural network classifier 
to identify possible intrusions, we are not so concerned with 
the actual distribution of Q. However, because network traffic 
is not stationary and network-based attacks may have different 
time durations, varying from a couple of seconds to several 
hours or longer, we need an algorithm which is capable of 
efficiently monitoring network traffic with different time 
windows. Based on the above observations, we used a layer-
window statistical model, Fig. 4, with each layer-window 
corresponding to a monitoring time slice of increasing size.  

The newly arrived events will first be stored in the event 
buffer of layer 1. The stored events are compared with the 
reference model of that layer and the results are then fed into 
the neural network classifier to decide the network status 
during that time window. The event buffer will be emptied 
once it becomes full, and the stored events will be averaged 
and forwarded to the event buffer of layer 2. This process will 
be repeated recursively until the top level is reached where the 
events will simply be dropped after processing. 
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Fig. 4 Statistical Model 
 

The similarity-measuring algorithm that we are using is 
shown below: 
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where f(N) is a function that takes into account the total 
number of occurrences during a time window.  

Besides similarity measurements, we also designed an 
algorithm for the real-time updating of the reference model. 
Let 

oldp  be the reference model before updating, 
newp  be the 

reference model after updating, and 
obsp  be the observed user 

activity within a time window. The formula to update the 
reference model is 

oldobsnew pspsp ××−+××= )1( αα  
in which α  is the predefined adaptation rate and s  is the 

value generated by the output of the neural network. Assume 
that the output of the neural network classifier is a continuous 
variable t  between –1 and 1, where –1 means intrusion with 
absolute certainty and 1 means no intrusion again with 
complete confidence. In between, the values of t  indicate 
proportionate levels of certainty. The function for calculating 
s  is 



 ≥

=
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Through the above equations, we ensured that the reference 
model would be updated actively for typical traffic while kept 
unchanged when attacks occurred. The attack events will be 
diverted and stored, as attack scripts, for future neural network 
learning. 

IV. NEURAL NETWORK CLASSIFIERS 

(a) Perceptron

x1

x2

xN-1

xN

Inputs

Threshold
θ

Output
y

Input
Layer

Hidden
Layer

Output
Layer

Input
Layer

Hidden
Layer

Output
Layer

C1x1

x2

xP-1

xP

Input
Layer

Complement
Layer

Catergory
Layer

C2

C2P

Output
Layer

Fuzzy ART

Error Signal

G

Gx1

x2

xP-1

xP

G

Input
Layer

Hidden Layer
of Green's
Functions

Output
Layer

(b) BP (c) PBH

(d) Fuzzy ARTMAP (e) RBF  
Fig. 5 Neural Network Architectures 

 
Neural networks are widely considered as an effective 

approach to classify patterns. However the high computation 
requirements and the long training cycles have hindered their 
applications. In [4][7], BP neural networks were used to detect 
anomalous user activities. In [8], we deployed a hybrid neural 
network paradigm [6], called perceptron-backpropagation-
hybrid (or PBH) network, which is a superposition of a 
perceptron and a small backpropagation network. In order to 
comprehensively investigate the performances of neural 
networks, we examined five different types of neural networks: 
Perceptron, BP, PBH, Fuzzy ART MAP and RBF. 

The perceptron [9], Fig. 5(a), is the simplest form of a 
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neural network used for the classification of linearly separable 
patterns. It consists of a single neuron with adjustable synapses 
and threshold. Although our data sets will not, in general, be 
linearly separable, we are using the perceptron as a baseline to 
measure the performances of other neural networks. 

The Backpropagation network [9], or BP, Fig. 5(b), is a 
multiplayer feedforward network, which contains an input 
layer, one or more hidden layers, and an output layer. BPs 
have strong generalization capabilities and have been applied 
successfully to solve a variety of difficult and diverse 
problems. Here we tested BP networks with the number of 
hidden neurons ranging from 2 to 8. 

The Perceptron-backpropagation hybrid network [6], or 
PBH, Fig. 5(c), is a superposition of a perceptron and a small 
backpropagation network. PBH networks are capable of 
exploring both linear and nonlinear correlations between the 
input stimulus vectors and the output values. We tested PBH 
networks where the number of hidden neurons ranged from 1 
to 8. 

The Fuzzy ARTMAP [10] in its most general form is a 
system of two Fuzzy ART networks ARTa and ARTb whose F2 
layers are connected by a subsystem referred to as a “match 
tracking system”. We are using a simplified version of Fuzzy 
ARTMAP [11], Fig. 5(d), which is implemented for 
classification problems. We tested ARTMAP networks with 
the number of category neurons ranging from 2 to 8. 

The Radial-basis function network [9], or RBF, Fig. 5(e), 
involves three entirely different layers. The input layer is made 
up of source nodes. The second layer is a hidden layer of high 
enough dimension, which serves a different purpose from that 
in a BP network. The output layer supplies the response of the 
network to the activation patterns applied to the input layer. 
We tested RBF networks with hidden neurons ranging from 2 
to 8. 

V. THE SIMULATION ENVIRONMENT 
We used a virtual network using simulation tools to generate 

attack scenarios. The experimental testbed that we built using 
OPNET, a powerful network simulation facility, is shown in 
Fig. 6. The testbed is a 10-BaseX LAN that consists of 11 
workstations and 1 server. 
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Fig. 6 Simulation Testbed 
 

We simulated the udp flooding attack within the testbed. To 
extensively test the performances of neural networks, we ran 
four independent scenarios with different typical traffic loads 
and attack traffic. For each simulation scenario, we collected 
10,000 records of network traffic. We divided these data into 
two separate sets, one set of 6000 records for training and the 

other of 4000 records for testing. In each scenario, the system 
was trained for 100 epochs.  

VI. RESULTS ON NEURAL NETWORKS 
We evaluated the performances of each of the neural 

networks based on the mean squared root errors and the 
misclassification rates of the outputs. The misclassification 
rate is defined as the percentage of the inputs that are 
misclassified by neural networks during one epoch, which 
includes both false positive and false negative 
misclassifications. 

Table 1 lists the traffic loads of the four simulation 
scenarios we ran for neural network testing. 

 
TABLE 1 TRAFFIC LOADS OF THE FOUR SIMULATION SCENARIOS 

 Background Traffic Attack Traffic 
Scenario 1 600kbps 50kbps 
Scenario 2 600kbps 100kbps 
Scenario 3 2Mbps 50kbps 
Scenario 4 2Mbps 100kbps 

 
In the rest of this section, we will present and analyze the 

simulation results of the neural networks one by one. 
1) Perceptron 

The mean squared root errors and the misclassification rates 
of the perceptrons within the four simulation scenarios are 
tabulated in Table 2. 

 
TABLE 2 THE SIMULATION RESULTS OF PERCEPTRONS 

 MSR Error Misclassification rate 
Scenario 1 0.686 0.167 
Scenario 2 0.716 0.202 
Scenario 3 0.739 0.234 
Scenario 4 0.635 0.119 

 
We can see that the perceptron performed poorly in all the 

four scenarios: Mean squared root errors are between 0.6 and 
0.7; and misclassification rates are between 0.1 and 0.2. Both 
the MSR errors and the misclassification rates are 
unacceptably high for an IDS. 

2) Fuzzy ARTMAP and RBF 
The results of Fuzzy ARTMAP and RBF nets are shown in 

Fig. 7 and Fig. 8. The x-axis values of the figures represent the 
number of category neurons in Fuzzy ARTMAP and the 
hidden neurons in RBF. The y-axis values represent the lowest 
Mean Squared Root Errors and the lowest Misclassification 
Rates that these neural nets achieved within the 100 epochs. 
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Fig. 7 Results of Fuzzy ARTMAP 
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Fig. 8 Results of RBF 

From the above figures, we can see that, as the number of 
hidden neurons increases, the performances of both ARTMAP 
and RBF networks improve. In most of the cases, both of them 
outperformed the perceptron. 

 
3) BP and PBH 

The results of BP nets are illustrated in Fig. 9 and Fig. 10. 
The figures indicate that BP and PBH networks have similar 
performances, and that both neural networks consistently 
perform better than the other three types of neural networks. 
The curves in these figures are flat: the MSR errors and 
misclassification rates do not decrease as the number of hidden 
neurons increases. We believe the reason is that, because we 
only deployed one attacking technique, UDP flooding attack, 
in our simulations, our data sets are too simple and not 
challenging enough for BP and PBH. 
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Fig. 9 Results of BP 
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Fig. 10 Results of PBH 

In the future, we will incorporate more types of Denial-of-
Service attacking techniques into our simulation, thus 
providing additional tests, and possibly greater challenges, for 
the neural networks under consideration. 

VII. STRESS TESTING THE HIDE SYSTEM 
In this section, we will stress test the sensitivity, and thus 

effectiveness, of HIDE. We simulated various UDP flooding 
attack scenarios using the test bed we introduced in section 5. 
The traffic loads of the simulations we ran for stress testing are 
specified in Table 3. From section 6, we can see that BP and 
PBH performed the best among the five neural networks 
tested, and that, for these two neural networks, increment in 
the number of hidden neurons did little to help with their 
performances. Therefore, the neural network that we chose for 
stress testing was a BP network with 2 hidden neurons. 

TABLE 3 THE TRAFFIC LOADS FOR STRESS TESTING 
Background traffic Attack Traffic 
600 Kbps 10Kbps, 20Kbps, 30Kbps, 40Kbps, 

50Kbps, 70Kbps, 100Kbps, 200Kbps 
2Mbps 10Kbps, 50Kbps, 150Kbps, 200Kbps 

 
Through the simulations, we expect to see the changes in the 
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Mean Squared Root Errors and the Misclassification Rates of 
the system as functions of the background traffic and attack 
traffic volumes. 
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Fig. 11 The results of Stress Testing 

 
The results of stress testing are shown in Fig. 11. From the 

figure, we can see that both the MSR errors and the 
misclassification rates decrease as the attack level increases. 
This is because that traffic patterns of higher-volume attacks 
yield greater differences from the reference model than the 
differences created by lower-volume attacks. We can also 
notice that, for a certain attack level, the performance for the 
600Kbps background traffic is consistently better than that of 
the 2Mbps background. One plausible explanation is that 
intruders can cover their behavior patterns from being detected 
under high background traffic scenarios more easily. 
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Fig. 12 ROC Curves 

Fig. 12 shows the ROC (Receiver Operating Characteristic) 
curves of some selected simulation scenarios. The x-axis of the 
figure is the false alarm rate, which is the rate of the typical 
traffic events being classified as intrusions; the y-axis of the 
figure is the detection rate, which is calculated as the ratio 
between the number of correctly detected intrusions and the 
total number of intrusions. For each curve, the point at the 
upper left corner represents the optimal detection with high 
detection rate and low false alarm rate. From the figure, we 
can observe the same tendency as in Fig. 11: The detection 

performance improves as the attack intensity increases. In fact, 
we can see that, when the attack level is 70Kbps for 600Kbps 
background traffic and 100Kbps for 2Mbps background 
traffic, the system performance approaches the optimum. 

VIII. CONCLUSIONS 
In this paper, we introduced the framework of HIDE, a 

hierarchical anomaly network intrusion detection system using 
statistical preprocessing and neural network classification. We 
described our experiments using five different neural 
networks. The results showed that BP and PBH nets 
outperform Perceptron, Fuzzy ARTMAP and RBF. Thus, 
classification capabilities of BP and PBH are more desirable 
for statistical anomaly intrusion detection systems. We also 
presented some of the results of stress testing. The results 
indicate that the system is very efficient. It can reliably detect 
UDP flooding attacks with traffic intensity as low as five to ten 
percent of the background intensity. 
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