Dijkstra’s Algorithm for Shortest Paths
Section 24.3 (CLRS): Sections 4.4 (KT)
Shortest Path Problem

Shortest path network.
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length $\ell_e = \text{length of edge } e$.

Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path

Cost of path s-2-3-5-t

$= 9 + 23 + 2 + 16$

$= 48$.
Single Source Shortest Path Problem:
• Given a digraph $G = (V, E)$
• Numeric edge weights
• Source vertex, $s \in V$
• Determine the distance $\delta(s, v)$ from s to every vertex v in the graph

Are negative weight edges allowed? (could arise in financial transaction networks)

Dijkstra’s algorithm assumes no negative edge weights.
• Computing the distance from source to each vertex (not the actual path)
relax(u, v):
 if d[u] + w(u, v) < d[v]: # is the path through u shorter?
 d[v] = d[u] + w(u, v) # yes, then take it
 pred[v] = u # record that we go through u

Fig. 15: Relaxation.
Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} \left(d(u) + \ell_e \right),
$$

add v to S, and set $d(v) = \pi(v)$.

![Diagram](image)
Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v).
Dijkstra’s Algorithm: Implementation

Build: Create a priority queue from a list of \(n \) elements, each with an associated key value.

Extract min: Remove (and return a reference to) the element with the smallest key value.

Decrease key: Given a reference to an element in the priority queue, decrease its key value to a specified value, and reorganize if needed.

```plaintext
dijkstra(G,w,s) {  
    for each (u in V) {  // initialization  
        d[u] = +infinity  
        mark[u] = undiscovered  
        pred[u] = null  
    }  
    d[s] = 0  // distance to source is 0  
    Q = a priority queue of all vertices u sorted by d[u]  
    while (Q is nonEmpty) {  // until all vertices processed  
        u = extract vertex with minimum d[u] from Q  
        for each (v in Adj[u]) {  // relax(u,v)  
            if (d[u] + w(u,v) < d[v]) {  // relax(u,v)  
                d[v] = d[u] + w(u,v)  
                decrease v’s key in Q to d[v]  
                pred[v] = u  
            }  
        }  
        mark[u] = finished  
    }  
    [The pred pointers define an ‘‘inverted’’ shortest path tree]  
}
```

Dijkstra’s Algorithm: Example

\[T(n,m) = \sum_{u \in V} (\log n + \deg(u) \cdot \log n) = \sum_{u \in V} (1 + \deg(u)) \log n \]

\[= \log n \sum_{u \in V} (1 + \deg(u)) = (\log n)(n + 2m) = \Theta((n + m) \log n). \]

Since \(G \) is connected, \(n \) is asymptotically no greater than \(m \), so this is \(O(m \log n) \).
Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.
Dijkstra's Shortest Path Algorithm

\[S = \{ \} \]
\[PQ = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ \}\nPQ = \{ s, 2, 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

- **S** = \{ s \}
- **PQ** = \{ 2, 3, 4, 5, 6, 7, t \}

Graph Representation:

- **Nodes:** s, 0, 2, 3, 4, 5, 6, 7, t
- **Edges:**
 - s to 0: 9
 - 0 to 2: 14
 - 2 to 3: 24
 - 3 to 4: 19
 - 4 to t: 6
 - 4 to 5: 11
 - 5 to 6: 30
 - 6 to 7: 14
 - 6 to 5: 6
 - 7 to t: 44

Key Points:

- **Distance Label:**
 - s: 0
 - 0: 9
 - 2: 9 + 14 = 23
 - 3: 24
 - 4: 19
 - 5: \infty
 - 6: \infty
 - 7: 20
 - t: \infty

- **Decrease Key:**
 - s: 9
 - 2: 14
 - 5: 30
 - 7: 20
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[PQ = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2 \}
PQ = \{ 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[PQ = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2 \}
PQ = \{ 3, 4, 5, 6, 7, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ \text{s, 2, 6} \} \]
\[PQ = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]

\[PQ = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[PQ = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2, 3, 6, 7 \}$
$PQ = \{ 4, 5, t \}$

delmin
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[PQ = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[PQ = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[\text{PQ} = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[PQ = \{ t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ \text{s, 2, 3, 4, 5, 6, 7, t} \}
PQ = \{ \}

[Graph of a network showing distances between nodes]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[PQ = \{ \} \]
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain \(\pi(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e \).

- Next node to explore = node with minimum \(\pi(v) \).
- When exploring \(v \), for each incident edge \(e = (v, w) \), update

 \[
 \pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.
 \]

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by \(\pi(v) \).

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap (^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>(n)</td>
<td>(n)</td>
<td>(\log n)</td>
<td>(d \log_d n)</td>
<td>1</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>(n)</td>
<td>(n)</td>
<td>(\log n)</td>
<td>(d \log_d n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>(m)</td>
<td>1</td>
<td>(\log n)</td>
<td>(\log_d n)</td>
<td>1</td>
</tr>
<tr>
<td>IsEmpty</td>
<td>(n)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>(n^2)</td>
<td>(m \log n)</td>
<td>(m \log_{m/n} n)</td>
<td>(m + n \log n)</td>
<td></td>
</tr>
</tbody>
</table>

\(^\dagger \) Individual ops are amortized bounds
Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, $d(u)$ is the length of the shortest s-u path.

Pf. (by induction on $|S|$)

Base case: $|S| = 1$ is trivial.

Inductive hypothesis: Assume true for $|S| = k \geq 1$.

- Let v be the next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

$$\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v)$$

- $\ell(P)$: nonnegative weights
- $\ell(P')$: inductive hypothesis
- $\ell(x,y)$: defn of $\pi(y)$
- Dijkstra chose v instead of y
Variants of Dijkstra’s

Vertex weights: There is a cost associated with each vertex. The overall cost is the sum of vertex and/or edge weights on the path.

Single-Sink Shortest Path: Find the shortest path from each vertex to a sink vertex t.

Multi-Source/Multi-Sink: You are given a collection of source vertices \{s_1, \ldots, s_k\}. For each vertex find the shortest path from its nearest source. (Analogous for multi-sink.)

Multiplicative Cost: Define the cost of a path to be the product of the edge weights (rather than the sum.) If all the edge weights are at least 1, find the single-source shortest path.
Give the final d and π values of the vertices obtained by running Dijkstra’s algorithm on the directed graph below with source A.
Next Time

- Bellman-Ford Shortest Paths
- Section 24.1 (CLRS)
- Section 6.8(KT)