COMP 355
Advanced Algorithms

Divide and Conquer: Closest Pair & Integer Multiplication
KT: 5.4-5.5
Divide-and-Conquer

• Divide-and-conquer.
 – **Divide**: Break up problem into several parts.
 – **Conquer**: Solve each part recursively.
 – **Combine**: Merge solutions to sub-problems into overall solution.

• Most common usage.
 – Break up problem of size n into two equal parts of size \(\frac{1}{2}n \).
 – Solve two parts recursively.
 – Combine two solutions into overall solution in **linear time**.

• Consequence.
 – Brute force: \(n^2 \).
 – Divide-and-conquer: \(n \log n \).
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n/4$ points in each piece.
Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly \(\frac{1}{2}n \) points on each side.
- **Conquer**: find closest pair in each side recursively.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side.\[\text{seems like } \Theta(n^2) \]
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, **assuming that distance < \(\delta \).**
- Observation: only need to consider points within \(\delta \) of line \(L \).
- Sort points in \(2\delta \)-strip by their \(y \) coordinate.

\[\delta = \min(12, 21) \]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Closest Pair of Points

Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Basis: If $|P| \leq 3$, then just solve the problem by brute force in $O(1)$ time.

Divide: Otherwise, partition the points into two subarrays P_L and P_R based on their x-coordinates. In particular, imagine a vertical line ℓ that splits the points roughly in half.

Conquer: Compute the closest pair within each of the subsets P_L and P_R each, by invoking the algorithm recursively. Let δ_L and δ_R be the closest pair distances in each case (see Fig. 35). Let $\delta = \min(\delta_L, \delta_R)$.

Combine: Note that δ is not necessarily the final answer, because there may be two points that are very close to one another but are on opposite sides of ℓ. To complete the algorithm, we want to determine the closest pair of points between the sets, that is, the closest points $p \in P_L$ and $q \in P_R$ (see Fig. 35). Since we already have an upper bound δ on the closest pair, it suffices to solve the following restricted problem: if the closest pair (p, q) are within distance δ, then we will return such a pair, otherwise, we may return any pair. (This restriction is very important to the algorithm’s efficiency.) In the next section, we’ll show how to solve this restricted problem in $O(n)$ time. Given the closest such pair (p, q), let $\delta' = \|pq\|$. We return $\min(\delta, \delta')$ as the final result.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 Compute separation line L such that half the points are on one side and half on the other side.

 \[\delta_1 = \text{Closest-Pair(left half)} \]
 \[\delta_2 = \text{Closest-Pair(right half)} \]
 \[\delta = \min(\delta_1, \delta_2) \]

 Delete all points further than \(\delta \) from separation line L.

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta \), update \(\delta \).

 return \(\delta \).
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq 2T(n/2) + O(n \log n) \implies T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by \(y \) coordinate, and all points sorted by \(x \) coordinate.
- Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n) \]
Add. Given two n-digit integers a and b, compute $a + b$.
- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.
- Brute force solution: $\Theta(n^2)$ bit operations.
To multiply two n-digit integers:

- Multiply four \(\frac{1}{2}n\)-digit integers.
- Add two \(\frac{1}{2}n\)-digit integers, and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0 \\
y = 2^{n/2} \cdot y_1 + y_0 \\
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) = 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]

\[
T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^2)
\]

assumes \(n\) is a power of 2
To multiply two n-digit integers:
- Add two ½n digit integers.
- Multiply three ½n-digit integers.
- Add, subtract, and shift ½n-digit integers to obtain result.

\[x = 2^{n/2} \cdot x_1 + x_0 \]
\[y = 2^{n/2} \cdot y_1 + y_0 \]
\[xy = 2^n \cdot x_A y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0 \]
\[= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0 \]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.585}) \) bit operations.

\[T(n) \leq T\left(\lfloor n/2 \rfloor \right) + T\left(\lceil n/2 \rceil \right) + T\left(1+\lceil n/2 \rceil \right) + \Theta(n) \]
\[\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \]
Karatsuba: Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
3T(n/2) + n & \text{otherwise}
\end{cases} \]

\[T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2} \right)^k = \frac{ \left(\frac{3}{2} \right)^{1+\log_2 n} - 1 }{ \frac{3}{2} - 1 } = 3n^{\log_2 3} - 2 \]
Next Time

Dynamic Programming: Weighted Interval Scheduling