COMP 355
Advanced Algorithms
NP-Completeness: Reductions
Chapter 8 (KT)
Section 34.2-34.3 (CLRS)
Recap

Decision Problems/Language recognition: are problems for which the answer is either yes or no. These can also be thought of as language recognition problems, assuming that the input has been encoded as a string. For example:

\[
\begin{align*}
\text{HC} & = \{ G \mid G \text{ has a Hamiltonian cycle} \} \\
\text{MST} & = \{ (G, c) \mid G \text{ has a MST of cost at most } c \}.
\end{align*}
\]

P: is the class of all decision problems which can be solved in polynomial time. While MST \(\in\) P, we do not know whether HC \(\in\) P (but we suspect not).

Certificate: is a piece of evidence that allows us to verify in polynomial time that a string is in a given language. For example, the language HC above, a certificate could be a sequence of vertices along the cycle. (If the string is not in the language, the certificate can be anything.)

NP: is defined to be the class of all languages that can be verified in polynomial time. (Formally, it stands for *Nondeterministic Polynomial time.*) Clearly, P \(\subseteq\) NP. It is widely believed that P \(\neq\) NP.
Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.
- Greed.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Ex.
- $O(n \log n)$ interval scheduling.
- $O(n \log n)$ FFT.
- $O(n^2)$ edit distance.
- $O(n^3)$ bipartite matching.

Algorithm design anti-patterns.
- NP-completeness.
- PSPACE-completeness.
- Undecidability.

- $O(n^k)$ algorithm unlikely.
- $O(n^k)$ certification algorithm unlikely.
- No algorithm possible.
Q. Which problems will we be able to solve in practice?

<table>
<thead>
<tr>
<th>Yes</th>
<th>Probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Matching</td>
<td>3D-matching</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>2-SAT</td>
<td>3-SAT</td>
</tr>
<tr>
<td>Planar 4-color</td>
<td>Planar 3-color</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Vertex cover</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$.

up to cost of reduction
Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:
• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Remarks.
• We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.
• Note: Cook reducibility.

Computational model supplemented by special piece of hardware that solves instances of Y in a single step

In contrast to Karp reductions
Suppose that there are two problems, H and U.

If we know that H is hard (cannot be solved in polynomial time), can we prove that U is also hard?

We effectively want to show that:
• \((H \not\in P) \Rightarrow (U \not\in P)\).

To do this, we could prove the contrapositive,
• \((U \in P) \Rightarrow (H \in P)\).

To show that U is not solvable in polynomial time, we will suppose (towards a contradiction) that a polynomial time algorithm for U did exist, and then we will use this algorithm to solve H in polynomial time, thus yielding a contradiction.
Suppose we have a subroutine that can solve any instance of problem U in polynomial time.

Given an input x for the problem H, we could translate it into an equivalent input x' for U. (where $x \in H$ if and only if $x' \in U$)

Run subroutine on x' and output whatever it outputs. It is easy to see that if U is solvable in polynomial time, then so is H.

We assume that the translation module runs in polynomial time. If so, we say we have a polynomial reduction of problem H to problem U, which is denoted $H \leq_p U$ (Karp reduction)
3-coloring (3Col): Given a graph G, can each of its vertices be labeled with one of three different “colors”, such that no two adjacent vertices have the same label (see (a) and (b)).

Clique Cover (CCov): Given a graph $G = (V, E)$ and an integer k, can we partition the vertex set into k subsets of vertices V_1, \ldots, V_k such that each V_i is a clique of G.
3-Colorability and Clique Cover

Reducing 3Col to CCov
Claim: A graph $G = (V, E)$ is 3-colorable if and only if its complement $G = (V, E)$ has a clique-cover of size 3. In other words, $G \in 3\text{Col} \iff (G, 3) \in \text{CCov}$.

Proof:

(⇒) If G 3-colorable, then let V_1, V_2, V_3 be the three color classes. We claim that this is a clique cover of size 3 for G, since if u and v are distinct vertices in V_i, then $\{u, v\} / \in E$ (since adjacent vertices cannot have the same color) which implies that $\{u, v\} \in E$. Thus every pair of distinct vertices in V_i are adjacent in G.

(⇐) Suppose G has a clique cover of size 3, denoted V_1, V_2, V_3. For $i \in \{1, 2, 3\}$ give the vertices of V_i color i. We assert that this is a legal coloring for G, since if distinct vertices u and v are both in V_i, then $\{u, v\} \in E$ (since they are in a common clique), implying that $\{u, v\} \in E$. Hence, two vertices with the same color are not adjacent.
Definition: We say that a language (i.e. decision problem) L_1 is polynomial-time reducible to language L_2 (written $L_1 \leq_P L_2$) if there is a polynomial time computable function f, such that for all x, $x \in L_1$ if and only if $f(x) \in L_2$.

Lemma: If $L_1 \leq_P L_2$ and $L_2 \in P$ then $L_1 \in P$.

Lemma: If $L_1 \leq_P L_2$ and $L_1 \not\in P$ then $L_2 \not\in P$.

Because the composition of two polynomials is a polynomial, we can chain reductions together.

Lemma: If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$ then $L_1 \leq_P L_3$.
Definition: A language \(L \) is NP-hard if \(L' \leq_p L \), for all \(L' \in \text{NP} \). (Note that \(L \) does not need to be in \text{NP}.)

Definition: A language \(L \) is NP-complete if:
1. \(L \in \text{NP} \) (that is, it can be verified in polynomial time), and
2. \(L \) is NP-hard (that is, every problem in \text{NP} is polynomially reducible to it).

Lemma: \(L \) is NP-complete if
1. \(L \in \text{NP} \) and
2. \(L' \leq_p L \) for some known NP-complete language \(L' \).
Structure of NPC and reductions

All problems in NP are reducible to SAT

If SAT ≤_p X then X is NP-hard

If Y ∈ NP and SAT ≤_p Y then Y is NP-complete
Next Time

NP-Completeness: Reductions