COMP 355
Advanced Algorithms

Graphs: Topological Sort
Section 22.3-22.5 (CLRS): Chapter 3 (KT)
Minimum Spanning Trees
Sections 23.1-23.2 (CLRS): Sections 4.5 (KT)
Graph Search Algorithms

BFS and DFS almost the same for directed and undirected graphs

BFS on directed graphs: still $O(m + n)$

- It is possible for node s to have a path to a node t even though t has no path s
- Computing the set of all nodes t with the property that s has a path to t

DFS on directed graphs: still $O(m + n)$

- At node u, recursively launches depth-first search, in order, for each node to which u has an edge
Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A directed graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

- Pf. \Rightarrow Follows from definition.
- Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path. Path from v to u: concatenate v-s path with s-u path. ▪

ok if paths overlap

1/27/2014
Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

![Diagram showing strongly connected and not strongly connected graphs](image-url)
Directed Acyclic Graphs

Def. An **DAG** is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A **topological order** of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, ..., v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- **Course prerequisite graph**: course \(v_i\) must be taken before \(v_j\).
- **Compilation**: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order $v_1, ..., v_n$ and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have $j < i$, a contradiction.
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

• Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
• Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
• Then, since u has at least one incoming edge (x, u), we can walk backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

• Base case: true if n = 1.
• Given DAG on n > 1 nodes, find a node v with no incoming edges.
• G - {v} is a DAG, since deleting v cannot create cycles.
• By inductive hypothesis, G - {v} has a topological ordering.
• Place v first in topological ordering; then append nodes of G - {v} in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of G-{v}
and append this order after v
Topological Ordering Algorithm: Example

Topological order:
Topological Ordering Algorithm: Example

Topological order: v_1
Topological Ordering Algorithm: Example

Topological order: v_1, v_2
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4 \)
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4, v_5
Topological Ordering Algorithm: Example

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6$
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5, v_6, v_7 \).
Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - $\text{count}[w] =$ remaining number of incoming edges
 - $S =$ set of remaining nodes with no incoming edges
- **Initialization:** $O(m + n)$ via single scan through graph.
- **Update:** to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge
Minimum spanning tree. Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are n^{n-2} spanning trees of K_n.

$G = (V, E)$

T, $\sum_{e \in T} c_e = 50$

Can't solve by brute force
MST is fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
 - traveling salesperson problem, Steiner tree
- Indirect applications.
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.
MST Problem

Given a connected, undirected graph $G = (V, E)$, a spanning tree is an acyclic subset of edges $T \subseteq E$ that connects all the vertices together.

We define the cost of a spanning tree T to be the sum of edges in the spanning tree

$$w(T) = \sum_{(u,v) \in T} w(u, v).$$

A minimum spanning tree (MST) is a spanning tree of minimum weight.
MST Problem

- Three spanning trees for the same graph
- (a) is not a MST
- (b) and (c) are both MSTs
Greedy Algorithms

Kruskal's algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.
Def. An undirected graph is a *tree* if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.
MST Terms

Def. We say that a subset $A \subseteq E$ is *viable* if A is a subset of edges in some MST.

Def. We say that an edge $(u, v) \in E \setminus A$ is *safe* if $A \cup \{(u, v)\}$ is viable. ($E \setminus A$ means the edges of E that are not in A.)

When is an edge safe?

Let S be a subset of the vertices $S \subseteq V$.

- A cut $(S, V \setminus S)$ is a partition of the vertices into two disjoint subsets (a)
- An edge (u, v) crosses the cut if $u \in S$ and $v \notin S$ (b)
- Given a subset of edges A, we say that a cut respects A if no edge in A crosses the cut (c)
Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.
Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

![Graph showing a cycle](image1)

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

![Graph showing a cutset](image2)

Cut S = {4, 5, 8}
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8
Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)
Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
• Suppose e does not belong to T^*, and let's see what happens.
• Adding e to T^* creates a cycle C in T^*.
• Edge e is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say f, that is in both C and D.
• $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
• Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$.
• This is a contradiction.
Cycle Property Proof

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (exchange argument)
• Suppose f belongs to T^*, and let's see what happens.
• Deleting f from T^* creates a cut S in T^*.
• Edge f is both in the cycle C and in the cutset D corresponding to S \Rightarrow there exists another edge, say e, that is in both C and D.
• $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
• Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$.
• This is a contradiction.
Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component.

![Case 1](image1.png)
![Case 2](image2.png)
Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find.

$m \leq n^2 \Rightarrow \log m$ is $O(\log n)$ essentially a constant

KruskalMST($G=(V,E), w$) {
 $A = \{}$
 \hspace{1cm} // initially A is empty
 Place each vertex u in a set by itself
 Sort E in increasing order by weight w
 for each $((u, v) \text{ in this order})$
 \hspace{1cm} if (find(u) != find(v)) {
 \hspace{1.5cm} // u and v in different trees
 \hspace{1.5cm} add (u, v) to A
 \hspace{1.5cm} \hspace{1cm} // join subtrees together
 \hspace{1.5cm} union(u, v)
 \hspace{1.5cm} \hspace{1cm} // merge these two components
 }
 return A
}
Kruskal’s Algorithm Example

Fig. 21: Kruskal’s Algorithm. Each vertex is labeled according to the set that contains it.
Kruskal’s Algorithm Demo

The diagram shows a network with labeled nodes and edges.

Nodes: 1, 2, 3, 4, 5, 6, 7, 8, 9
Edges: 1-5, 5-7, 7-6, 6-4, 4-8, 8-3, 3-1, 1-9, 9-2, 2-6
Kruskal’s Algorithm Demo
Next Time

• Prim and Boruvka’s Algorithms for MST
• Section 23.2 (CLRS)
• Section 4.5(KT)