
Using log-probabilities for Naive Bayes

Recall that a Naive Bayes classifier (NBC) is set up as follows.

We have a number of hypotheses (or classes), H1, . . . , Hn.

We have a set of features, F1, . . . , Fm.

For the spam classification task, we have two hypotheses, spam and not-spam, and m words
in our vocabulary, F1 through Fm.

During the training phase, the NBC estimates the prior probabilities of each hypothesis and
the probability of each word given each hypothesis:

P (spam) =
# of emails labeled as spam

total # of emails

(and similarly for not-spam.)

The NBC also estimates the probability of each word given each hypothesis:

P (Fj | Hi) =
# of Hi emails with word Fj + 1

total # of Hi emails + 2

(and similarly for ¬Fj, which means the absence of word Fj.)

Naive Bayes then uses the MAP hypothesis to predict a class:

HMAP = argmax
i

P (D | Hi)P (Hi)

= argmax
i∈{spam,not-spam}

P (F1, . . . , Fm | Hi)P (Hi)

= argmax
i∈{spam,not-spam}

[
P (F1 | Hi) · · ·P (Fm | Hi)

]
P (Hi)

= argmax
i∈{spam,not-spam}

[ m∏
j=1

P (Fj | Hi)
]
P (Hi)

When you implement this calculation in code, a problem arises when m (the size of the
vocabulary) gets very big. Notice that because each P (Fj | Hi) term is between 0 and
1, when you start multiplying them together, the overall product starts approaching zero.
This is exacerbated by each new feature that is added: with 1,000 features, multiplying 1,000
probabilities together quickly results in an extremely tiny number, one which often cannot be
represented in a double or long double. This issue is not limited to C++; every language
which uses a standard floating-point data type with a fixed number of bits will eventually
run out of precision with extremely tiny numbers.
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A common work-around for this situation is to represent probabilities as log-probabilities
instead. That is, instead of using P (Fj | Hi) and P (Hi), we we use lnP (Fj | Hi) and lnP (Hi)
(ln means the natural logarithm, though any logarithm works). This transformation works
(and is rather elegant) for a number of reasons:

• Because a probability is always between 0 and 1, a log-probability is always between
−∞ and 0 (a much wider range of numbers than between 0 and 1).

• If a < b, then ln a < ln b. This property of logarithms means that comparing probabil-
ities to figure out which one is the biggest (as argmax does) is equivalent to comparing
the log-probabilities.

• Finally, the math works out nicely because the logarithm of a product is the sum of
the logarithms (that is, ln(a · b) = ln a + ln b):

HMAP = argmax
i∈{spam,not-spam}

[ m∏
j=1

P (Fj | Hi)
]
P (Hi)

= argmax
i∈{spam,not-spam}

ln

([ m∏
j=1

P (Fj | Hi)
]
P (Hi)

)

= argmax
i∈{spam,not-spam}

ln
[ m∏
j=1

P (Fj | Hi)
]

+ lnP (Hi)

= argmax
i∈{spam,not-spam}

[ m∑
j=1

lnP (Fj | Hi)
]

+ lnP (Hi)

• The resulting sums (rather than products) are usually manageable numbers, unlike
than the very tiny probabilities that result without this transformation.

Note that because we are taking the logarithm of numbers between 0 and 1, the log-
probabilities will always be negative. This is OK. Just do your calculations and comparisons
as you would normally: a “more negative” number (meaning a negative number greater in
absolute value) corresponds to a smaller probability than a “less negative” number, so you
don’t have to switch the comparison.

Example: say you have the probabilities 0.2 and 0.3. Note that ln(0.2) ≈ −1.6 and ln(0.3) ≈
−1.2. The comparisons are preserved: 0.2 < 0.3 and −1.6 < −1.2.
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