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Algorithms for MSTs
Sections 4.5 (KT) 
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Minimum Spanning Tree
Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T  E such that 
T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem.  There are nn-2 spanning trees of Kn.
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G = (V, E) T,  eT ce = 50

can't solve by brute force
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Applications
MST is fundamental problem with diverse applications.

• Network design.

– telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

– traveling salesperson problem, Steiner tree

• Indirect applications.

– max bottleneck paths

– LDPC codes for error correction

– image registration with Renyi entropy

– learning salient features for real-time face verification

– reducing data storage in sequencing amino acids in a protein

– model locality of particle interactions in turbulent fluid flows

– autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.
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MST Problem

Given a connected, undirected graph G = (V,E), a 
spanning tree is an acyclic subset of edges T ⊆ E that 
connects all the vertices together.

We define the cost of a spanning tree T to be the sum 
of edges in the spanning tree

A minimum spanning tree (MST) is a spanning tree of 
minimum weight.
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MST Problem
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• Three spanning trees for the same graph

• (a) is not a MST

• (b) and ( c) are both MSTs
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Greedy Algorithms

Kruskal's algorithm.  Start with T = . Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle.

Prim's algorithm.  Start with some root node s and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T.

Boruvka’s algorithm. Similar to Kruskal’s, but easiest to 
implement on a parallel computer.

Remark.  All three algorithms produce an MST.

6COMP 355: Advanced Algorithms



9/20/2017

4

Trees

Def.  An undirected graph is a tree if it is connected and does not 
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of 
the following statements imply the third.

– G is connected.

– G does not contain a cycle.

– G has n-1 edges.
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MST Terms
Def. We say that a subset A ⊆ E is viable if A is a subset of edges in some MST.

Def. We say that an edge (u, v) ∈ E \ A is safe if A ∪ {(u, v)} is viable. (E \A means the 
edges of E that are not in A.)

When is an edge safe?

Let S be a subset of the vertices S ⊆ V . 

• A cut (S, V \ S) is a partition of the vertices into two disjoint subsets (a)

• An edge (u, v) crosses the cut if u ∈ S and v /∈ S (b)

• Given a subset of edges A, we say that a cut respects A if no edge in A crosses the 
cut(c)
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Kruskal's Algorithm:  Proof of 
Correctness

Kruskal's algorithm.  [Kruskal, 1956]

• Consider edges in ascending order of weight.

• Case 1:  If adding e to T creates a cycle, discard e according to cycle 
property.

• Case 2:  Otherwise, insert e = (u, v) into T according to cut property where 
S = set of nodes in u's connected component. 

Case 1

v

u

Case 2

e

e
S
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Implementation:  Kruskal's Algorithm
Implementation.  Use the union-find data structure.

• Build set T of edges in the MST.

• Maintain set for each connected component.

• O(m log n) for sorting and  O(m  (m, n)) for union-find.

m  n2  log m is O(log n) essentially a constant
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Kruskal’s Algorithm Example
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Kruskal’s Algorithm Demo
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Prim's Algorithm:  Proof of Correctness
Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959]

• Initialize S = any node.

• Apply cut property to S.

• Add min cost edge in cutset corresponding to S to T, and add one new 
explored node u to S.

S V \ S S V \ S
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Implementation:  Prim's Algorithm
Implementation.  Use a priority queue 

• Maintain set of explored nodes S.

• For each unexplored 

node v, maintain 

attachment cost 

a[v] = cost of cheapest 

edge v to a node in S.

• Runtime is O(m log n)

30

Prim's Algorithm Example
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Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.
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Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.
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Prim's Algorithm Demo
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Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.
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Boruvka’s Algorithm

The Boruvka algorithm can be summarized in one line:

Image compliments of Jeff Erickson at University of Illinois, Urbana-Champaign, who modified an existing image drawn by and available on Allie Brosh’s, “This is Why I’ll Never 
be an Adult”, Hyperbole and a Half website
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Boruvka’s Algorithm
Add edges to a growing forest of trees (Kruskal’s algorithm in parallel)
• At each stage, find the minimum-weight edge that connects each tree to a different one, 

then add all such edges to the MST. 
• Assume that the edge weights are all different, to avoid cycles.
• Hint: Maintain in a vertex-indexed array to identify the edge that connects each 

component to its nearest neighbor, and use the union-find data structure.
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Boruvka’s Algorithm Example
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Boruvka’s Algorithm: Analysis
How long does Boruvka’s algorithm take?

Each iteration (of the outer while loop) can be performed in O(n + m) 
(DFS search)

But how many iterations are required in general?

Claim:  There are never more than O(log n) iterations needed.
• Let m denote the number of components at some stage
• Each component merges with at least 1 other component, so at most 

we have m/2 components, and at least we have 1
• Therefore, the number of components decreases by at least half 

each time

Total running time is O((n+m) log n) time ≈ O(m log n) (since n is 
asymptotically no larger than m)
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Lexicographic Tiebreaking
To remove the assumption that all edge costs are distinct: perturb all edge 
costs by tiny amounts to break any ties.

Impact.  Kruskal and Prim only interact with costs via pairwise comparisons.  If 
perturbations are sufficiently small, MST with perturbed costs is MST with 
original costs. 

Implementation.  Can handle arbitrarily small perturbations implicitly by 
breaking ties lexicographically, according to index.

boolean less(i, j) {

if      (cost(ei) < cost(ej)) return true

else if (cost(ei) > cost(ej)) return false

else if (i < j)               return true

else            return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2
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MST Algorithms:  Theory

Deterministic comparison based algorithms.
• O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
• O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
• O(m (m, n)). [Fredman-Tarjan 1987]
• O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
• O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
• O(m) randomized. [Karger-Klein-Tarjan 1995]
• O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
• 2-d:  O(n log n). compute MST of edges in Delaunay
• k-d:  O(k n2). dense Prim
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For the following graph:

1. List the edges of the minimum spanning tree in the order 
that they are added by Kruskal’s algorithm. (List only the 
edges that are in the MST.) You may list edges either by 
their weight (e.g., “7”) or by their endpoints (e.g., “(b, 
d)”). 

2. Assuming that ‘a’ is the start vertex, list the edges of the 
minimum spanning tree in the order that they are added 
by Prim’s algorithm. (List only the edges that are in the 
MST.)
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Next Time

• Dijkstra’s Algorithm for Shortest Paths

• Section 4.4(KT)


