
9/20/2017

1

COMP 355
Advanced Algorithms

COMP 355: Advanced Algorithms 1

Algorithms for MSTs
Sections 4.5 (KT)

2

Minimum Spanning Tree
Minimum spanning tree. Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T  E such that
T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

5

23

10

21

14

24

16

6

4

18
9

7

11

8

5

6

4

9

7

11

8

G = (V, E) T, eT ce = 50

can't solve by brute force

COMP 355: Advanced Algorithms

9/20/2017

2

Applications
MST is fundamental problem with diverse applications.

• Network design.

– telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms for NP-hard problems.

– traveling salesperson problem, Steiner tree

• Indirect applications.

– max bottleneck paths

– LDPC codes for error correction

– image registration with Renyi entropy

– learning salient features for real-time face verification

– reducing data storage in sequencing amino acids in a protein

– model locality of particle interactions in turbulent fluid flows

– autoconfig protocol for Ethernet bridging to avoid cycles in a network

• Cluster analysis.

3COMP 355: Advanced Algorithms

MST Problem

Given a connected, undirected graph G = (V,E), a
spanning tree is an acyclic subset of edges T ⊆ E that
connects all the vertices together.

We define the cost of a spanning tree T to be the sum
of edges in the spanning tree

A minimum spanning tree (MST) is a spanning tree of
minimum weight.

COMP 355: Advanced Algorithms 4

9/20/2017

3

MST Problem

5

• Three spanning trees for the same graph

• (a) is not a MST

• (b) and (c) are both MSTs

COMP 355: Advanced Algorithms

Greedy Algorithms

Kruskal's algorithm. Start with T = . Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

Prim's algorithm. Start with some root node s and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.

Boruvka’s algorithm. Similar to Kruskal’s, but easiest to
implement on a parallel computer.

Remark. All three algorithms produce an MST.

6COMP 355: Advanced Algorithms

9/20/2017

4

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of
the following statements imply the third.

– G is connected.

– G does not contain a cycle.

– G has n-1 edges.

7COMP 355: Advanced Algorithms

MST Terms
Def. We say that a subset A ⊆ E is viable if A is a subset of edges in some MST.

Def. We say that an edge (u, v) ∈ E \ A is safe if A ∪ {(u, v)} is viable. (E \A means the
edges of E that are not in A.)

When is an edge safe?

Let S be a subset of the vertices S ⊆ V .

• A cut (S, V \ S) is a partition of the vertices into two disjoint subsets (a)

• An edge (u, v) crosses the cut if u ∈ S and v /∈ S (b)

• Given a subset of edges A, we say that a cut respects A if no edge in A crosses the
cut(c)

8

9/20/2017

5

14

Kruskal's Algorithm: Proof of
Correctness

Kruskal's algorithm. [Kruskal, 1956]

• Consider edges in ascending order of weight.

• Case 1: If adding e to T creates a cycle, discard e according to cycle
property.

• Case 2: Otherwise, insert e = (u, v) into T according to cut property where
S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

COMP 355: Advanced Algorithms

Implementation: Kruskal's Algorithm
Implementation. Use the union-find data structure.

• Build set T of edges in the MST.

• Maintain set for each connected component.

• O(m log n) for sorting and O(m  (m, n)) for union-find.

m  n2  log m is O(log n) essentially a constant

15COMP 355: Advanced Algorithms

9/20/2017

6

16

Kruskal’s Algorithm Example

COMP 355: Advanced Algorithms

17

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

7

18

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

19

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

8

20

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

21

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

9

22

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

23

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

10

24

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

25

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

11

26

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

27

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

9/20/2017

12

28

Kruskal’s Algorithm Demo

COMP 355: Advanced Algorithms

Prim's Algorithm: Proof of Correctness
Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

• Initialize S = any node.

• Apply cut property to S.

• Add min cost edge in cutset corresponding to S to T, and add one new
explored node u to S.

S V \ S S V \ S

COMP 355: Advanced Algorithms 29

9/20/2017

13

Implementation: Prim's Algorithm
Implementation. Use a priority queue

• Maintain set of explored nodes S.

• For each unexplored

node v, maintain

attachment cost

a[v] = cost of cheapest

edge v to a node in S.

• Runtime is O(m log n)

30

Prim's Algorithm Example

COMP 355: Advanced Algorithms 31

9/20/2017

14

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 32

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 33

9/20/2017

15

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 34

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 35

9/20/2017

16

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 36

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 37

9/20/2017

17

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 38

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 39

9/20/2017

18

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 40

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 41

9/20/2017

19

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 42

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 43

9/20/2017

20

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 44

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 45

9/20/2017

21

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 46

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 47

9/20/2017

22

Prim's Algorithm Demo
Initialize S = any node.
Repeat n – 1 times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.

COMP 355: Advanced Algorithms 48

Boruvka’s Algorithm

The Boruvka algorithm can be summarized in one line:

Image compliments of Jeff Erickson at University of Illinois, Urbana-Champaign, who modified an existing image drawn by and available on Allie Brosh’s, “This is Why I’ll Never
be an Adult”, Hyperbole and a Half website

49

9/20/2017

23

Boruvka’s Algorithm
Add edges to a growing forest of trees (Kruskal’s algorithm in parallel)
• At each stage, find the minimum-weight edge that connects each tree to a different one,

then add all such edges to the MST.
• Assume that the edge weights are all different, to avoid cycles.
• Hint: Maintain in a vertex-indexed array to identify the edge that connects each

component to its nearest neighbor, and use the union-find data structure.

COMP 355: Advanced Algorithms 50

Boruvka’s Algorithm Example

51

9/20/2017

24

Boruvka’s Algorithm: Analysis
How long does Boruvka’s algorithm take?

Each iteration (of the outer while loop) can be performed in O(n + m)
(DFS search)

But how many iterations are required in general?

Claim: There are never more than O(log n) iterations needed.
• Let m denote the number of components at some stage
• Each component merges with at least 1 other component, so at most

we have m/2 components, and at least we have 1
• Therefore, the number of components decreases by at least half

each time

Total running time is O((n+m) log n) time ≈ O(m log n) (since n is
asymptotically no larger than m)

COMP 355: Advanced Algorithms 52

Lexicographic Tiebreaking
To remove the assumption that all edge costs are distinct: perturb all edge
costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If
perturbations are sufficiently small, MST with perturbed costs is MST with
original costs.

Implementation. Can handle arbitrarily small perturbations implicitly by
breaking ties lexicographically, according to index.

boolean less(i, j) {

if (cost(ei) < cost(ej)) return true

else if (cost(ei) > cost(ej)) return false

else if (i < j) return true

else return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

COMP 355: Advanced Algorithms 53

9/20/2017

25

54

MST Algorithms: Theory

Deterministic comparison based algorithms.
• O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
• O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
• O(m (m, n)). [Fredman-Tarjan 1987]
• O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
• O(m  (m, n)). [Chazelle 2000]

Holy grail. O(m).

Notable.
• O(m) randomized. [Karger-Klein-Tarjan 1995]
• O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
• 2-d: O(n log n). compute MST of edges in Delaunay
• k-d: O(k n2). dense Prim

COMP 355: Advanced Algorithms

For the following graph:

1. List the edges of the minimum spanning tree in the order
that they are added by Kruskal’s algorithm. (List only the
edges that are in the MST.) You may list edges either by
their weight (e.g., “7”) or by their endpoints (e.g., “(b,
d)”).

2. Assuming that ‘a’ is the start vertex, list the edges of the
minimum spanning tree in the order that they are added
by Prim’s algorithm. (List only the edges that are in the
MST.)

55

9/20/2017

26

COMP 355: Advanced Algorithms 56

Next Time

• Dijkstra’s Algorithm for Shortest Paths

• Section 4.4(KT)

