COMP 355
Advanced Algorithms

Dijkstra’s Algorithm for Shortest Paths
Sections 4.4 (KT)
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Shortest Path Problem

Shortest path network.
— Directed graph G = (V, E).
— Source s, destination t.
— Length /, = length of edge e.

Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path
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Single Source Shortest Paths

Single Source Shortest Path Problem:

* Given adigraph G =(V, E)

* Numeric edge weights

* Source vertex,s €V

* Determine the distance &(s, v) from s to every vertex v in the graph

Are negative weight edges allowed? (could arise in financial
transaction networks)

Dijkstra’s algorithm assumes no negative edge weights.

* Computing the distance from source to each vertex (not the actual
path)

Shortest Paths and Relaxation

relax (u,v) :

if d[u] + w(u,v) < d[v]: # is the path through u shorter?
d[v] = d[u] + w(u,v) # yes, then take it
pred[v] = u # record that we go through u
pred|v] +— u
__ﬂf_ﬁ& relax(u, v) _.,f{:ﬁ&(_/ .
‘S~ o 5%
&~ O~
d[v] + d[u] + w(u,v)

Fig. 15: Relaxation.
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Dijkstra's Algorithm

Dijkstra's algorithm.

* Maintain a set of explored nodes S for which we have
determined the shortest path distance d(u) from s to u.

* Initialize S={s}, d(s) =0.

* Repeatedly choose unexplored node v which minimizes

z(V)= min  d(u)+/,,
e=(u,v):uesS

shortest path to some u in explored part,

followed by a single edge (u, v)

add vto S, and set d(v) = wt(v).

d(u) e

Dijkstra's Algorithm

Dijkstra's algorithm.

* Maintain a set of explored nodes S for which we have
determined the shortest path distance d(u) from s to u.

* Initialize S={s}, d(s) = 0.

* Repeatedly choose unexplored node v which minimizes

z(V)= min  d(u)+7,,
e=(u,v):uesS

shortest path to some u in explored part,

followed by a single edge (u, v)

add vto S, and set d(v) = w(v).

d(u) le

9/22/2017



Dijkstra’s Algorithm: Implementation

Build: Create a priority queue from a list of n elements, each with an associated key value.

Extract min: Remove (and return a reference to) the element with the smallest key value.

Decrease key: Given a reference to an element in the priority queue, decrease its key value
to a specified value, and reorganize if needed.

Dijkstra’s Algorithm

dijkstra(G,w,s) {
for each (u in V) { // initialization
d[u]l = +infinity
mark[u] = undiscovered
pred[u]l = null
}
dlsl = 0 // distance to source is 0
Q = a priority queue of all vertices u sorted by dlul
while (Q is nonEmpty) { // until all vertices processed
1 = extract vertex with minimum d[u] from Q
for each (v in Adj[ul) {
if (dlul + wiu,v) < dvl) { // relax(u,v)
dlvl = dlu] + w(u,v)
decrease v’s key in Q to d[v]
predlv] = u
¥
}
mark[u] = finished
}

[The pred pointers define an ‘‘inverted’’ shortest path tree]

Dijkstra’s Algorithm: Example

A~ 1 €

T(n,m) = Z{logn+dcg[u) slogn) = ZU + deg(u))logn

ueV uel

lugfle(l—dcg[uJ‘; = (logn)(n+2m) = O((n+m)logn).

ucV

Since ¢ is connected, n is asymptotically no greater than m, so this is O(mlogn).
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Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.
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Dijkstra's Shortest Path Algorithm

S={}
PQ={s,2,3,4,56,71t}
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Dijkstra's Shortest Path Algorithm

s={}
PQ={s,23,4,56,7,1}

delmin
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Dijkstra's Shortest Path Algorithm
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Dijkstra's Shortest Path Algorithm

S={s}
PQ={2,3,4,567t}

, delmin
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Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,56,7,t}
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Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,56,7t} decrease key

Dijkstra's Shortest Path Algorithm

S={s,2}
PQ={3,4,56,7,t}
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Dijkstra's Shortest Path Algorithm

S={s,2,6}
PQ={3,4,57t}
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Dijkstra's Shortest Path Algorithm

S={s,2,6}
PQ={3I4I517It}
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Dijkstra's Shortest Path Algorithm

S={s,2,6,7}
PQ={31415;t}

Dijkstra's Shortest Path Algorithm

S={s,2,6,7} delmin
PQ={3,4,5,1t} A\
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Dijkstra's Shortest Path Algorithm

$={s,2,3,6,7}
PQ={4,5t}

Dijkstra's Shortest Path Algorithm

S={s,2,3,6,7}
PQ={4I5It}
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Dijkstra's Shortest Path Algorithm

$={s,2,3,56,7}
PQ={4,t}

Dijkstra's Shortest Path Algorithm

S={s,2,3,56,7}
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Dijkstra's Shortest Path Algorithm

S={s,2,3,4,56,7)
PQ={t}

Dijkstra's Shortest Path Algorithm

S={s,2,3,4,56,7}
PQ={t}
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Dijkstra's Shortest Path Algorithm

S={SP2l3l4l5l6l7lt}
PQ={}

Dijkstra's Shortest Path Algorithm
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Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1is trivial.

Inductive hypothesis: Assume true for |S| =k > 1.

* Letvbe next node added to S, and let u-v be the chosen edge.

* The shortest s-u path plus (u, v) is an s-v path of length wt(v).

* Consider any s-v path P. We'll see that it's no shorter than w(v). P

* Let x-y be the first edge in P that leaves S,
and let P' be the subpath to x.

* Pisalready too long as soon as it leaves S.

() 20 (P)+ L (xy) : d(x) + ¢ (X'Y)IZ (y) : (V)

nonnegative inductive defn of n(y) Dijkstra chose v
weights hypothesis instead of y

29

Variants of Dijkstra’s

Vertex weights: There is a cost associated with each vertex. The overall
cost is the sum of vertex and/or edge weights on the path.

Single-Sink Shortest Path: Find the shortest path from each vertexto a
sink vertex t.

Multi-Source/Multi-Sink: You are given a collection of source vertices
{s1, ..., sk}. For each vertex find the shortest path from its nearest
source. (Analogous for multi-sink.)

Multiplicative Cost: Define the cost of a path to be the product of the
edge weights (rather than the sum.) If all the edge weights are at least
1, find the single-source shortest path.
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Practice

Give the final d and predecessor values of the vertices obtained
by running Dijkstra’s algorithm on the directed graph below with
source A.
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