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COMP 355
Advanced Algorithms

Dynamic Programming:
Weighted Interval Scheduling

KT (Ch.6 Intro, 6.1-6.2)
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Google Interview Question

Given two sorted arrays with N elements each, find the 
median of their union in O(log n). 
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Algorithmic Paradigms

Greed.  Build up a solution incrementally, myopically optimizing 
some local criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, 
solve each sub-problem independently, and combine solution to 
sub-problems to form solution to original problem. 

Dynamic programming. Break up a problem into a series of 
overlapping sub-problems, and build up solutions to larger and 
larger sub-problems.
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Dynamic Programming Applications

Areas. 
• Bioinformatics.
• Control theory.
• Information theory.
• Operations research.
• Computer science:  theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms. 
• Viterbi for hidden Markov models.
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.
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DP relies are two important structural qualities:

• Optimal substructure: (principle of optimality) 

– For the global problem to be solved optimally, 
each subproblem should be solved optimally. 

• Overlapping Subproblems

– The number of distinct subproblems is reasonably 
small, ideally polynomial in the input size.

Dynamic Programming
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• Top-Down: 
– A solution to a DP problem is expressed recursively. 

– Applies recursion directly to solve the problem. 

– The same recursive call is often made many times. 

– Use memoization (record the results of recursive calls) so that 
subsequent calls to a previously solved subproblem are handled by 
table look-up.

• Bottom-up: 
– Formulate problem recursively, but solve iteratively

– Combine the solutions to small subproblems to obtain the solution to 
larger subproblems. 

– The results are stored in a table.

Generating Subproblems
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

• Consider jobs in ascending order of finish time.

• Add job to subset if it is compatible with previously chosen 
jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed.
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Weighted Interval Scheduling
Weighted interval scheduling problem.

• Job j starts at sj, finishes at fj, and has weight or value vj . 

• Two jobs compatible if they don't overlap.

• Goal:  find maximum weight subset of mutually compatible jobs.
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Weighted vs. Unweighted
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Weighted Interval Scheduling
Notation.  Label jobs by finishing time:  f1   f2   . . .  fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Weighted Input and P-Values
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Dynamic Programming:  Recursive Formulation

Notation.  OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.

Case 1:  OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  p(j)

Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  
Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  
Brute Force

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems   exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances -
grows like Fibonacci sequence.
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demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling:  
Memoization

Memoization.  Store results of each sub-problem in a cache; 
lookup as needed.
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Weighted Interval Scheduling:  
Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

• Sort by finish time:  O(n log n).

• Computing p() :  O(n) after sorting by start time.

• M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

• Overall running time of M-Compute-Opt(n) is O(n).   

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  
Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

if M[j-1] > vj + M[p(j)]:

M[j] = M[j-1]; pred[j] = j-1;

else:

M[j] = vj + M[p(j)]; pred[j] = p[j];

}
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Computing the Final Schedule

Example of iterative construction and predecessor values. The final optimal 
value is 14. By following the predecessor pointers back from M[6] we see that 
the requests that are in the schedule are 5 and 2.
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