
10/6/2017

1

COMP 355
Advanced Algorithms

Dynamic Programming:
Weighted Interval Scheduling

KT (Ch.6 Intro, 6.1-6.2)

1COMP 355: Advanced Algorithms

COMP 355: Advanced Algorithms 2

Google Interview Question

Given two sorted arrays with N elements each, find the
median of their union in O(log n).

10/6/2017

2

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems,
solve each sub-problem independently, and combine solution to
sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

3COMP 355: Advanced Algorithms

Dynamic Programming Applications

Areas.
• Bioinformatics.
• Control theory.
• Information theory.
• Operations research.
• Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.
• Viterbi for hidden Markov models.
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

4COMP 355: Advanced Algorithms

10/6/2017

3

DP relies are two important structural qualities:

• Optimal substructure: (principle of optimality)

– For the global problem to be solved optimally,
each subproblem should be solved optimally.

• Overlapping Subproblems

– The number of distinct subproblems is reasonably
small, ideally polynomial in the input size.

Dynamic Programming

5COMP 355: Advanced Algorithms

• Top-Down:
– A solution to a DP problem is expressed recursively.

– Applies recursion directly to solve the problem.

– The same recursive call is often made many times.

– Use memoization (record the results of recursive calls) so that
subsequent calls to a previously solved subproblem are handled by
table look-up.

• Bottom-up:
– Formulate problem recursively, but solve iteratively

– Combine the solutions to small subproblems to obtain the solution to
larger subproblems.

– The results are stored in a table.

Generating Subproblems

6COMP 355: Advanced Algorithms

10/6/2017

4

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

• Consider jobs in ascending order of finish time.

• Add job to subset if it is compatible with previously chosen
jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

7COMP 355: Advanced Algorithms

Weighted Interval Scheduling
Weighted interval scheduling problem.

• Job j starts at sj, finishes at fj, and has weight or value vj .

• Two jobs compatible if they don't overlap.

• Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8COMP 355: Advanced Algorithms

10/6/2017

5

Weighted vs. Unweighted

9COMP 355: Advanced Algorithms

Weighted Interval Scheduling
Notation. Label jobs by finishing time: f1  f2  . . .  fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

10COMP 355: Advanced Algorithms

10/6/2017

6

Weighted Input and P-Values

11COMP 355: Advanced Algorithms

Dynamic Programming: Recursive Formulation

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.

Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

 








otherwise)1()),((max

0j if0
)(

jOPTjpOPTv
jOPT

j

optimal substructure

12COMP 355: Advanced Algorithms

10/6/2017

7

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:
Brute Force

Brute force algorithm.

13COMP 355: Advanced Algorithms

Weighted Interval Scheduling:
Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems  exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances -
grows like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

14COMP 355: Advanced Algorithms

demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)

10/6/2017

8

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling:
Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

15COMP 355: Advanced Algorithms

Weighted Interval Scheduling:
Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

• Sort by finish time: O(n log n).

• Computing p() : O(n) after sorting by start time.

• M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

• Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

16COMP 355: Advanced Algorithms

10/6/2017

9

Weighted Interval Scheduling:
Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

if M[j-1] > vj + M[p(j)]:

M[j] = M[j-1]; pred[j] = j-1;

else:

M[j] = vj + M[p(j)]; pred[j] = p[j];

}

17COMP 355: Advanced Algorithms

Computing the Final Schedule

Example of iterative construction and predecessor values. The final optimal
value is 14. By following the predecessor pointers back from M[6] we see that
the requests that are in the schedule are 5 and 2.

18COMP 355: Advanced Algorithms

