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COMP 355
Advanced Algorithms

Dynamic Programming:
Manhattan Tourist Problem

Sequence Alignment
Section 6.6-6.7(KT)
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Yet Another DP Example

Imagine seeking a path 
from source to destination 
in a Manhattan-like city grid 
that maximizes the number 
of attractions (*) passed. 
With the following caveat–
at every step you must make 
progress towards the goal.

We treat the city map as a 
graph, with “vertices” at
each corner, and weighted edges along each block. The 
weights are the number of attractions along each block.
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Manhattan Tourist Problem (MTP)
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Manhattan Tourist Problem: 
Formulation

Goal: Find the maximum weighted path in a 

grid.

Input: A weighted grid G with two distinct 

vertices, one labeled “source” and the other 

labeled “destination”

Output: A longest path in G from “source” to 

“destination”
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MTP: Greedy Algorithm Is Not Optimal
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promising start, 

but leads to 

bad choices!
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18

Greedy Algorithm:
At each step select 
the maximum 
weight block.

Greed has a short 
horizon

21 22

4



10/11/2017

3

MTP as a Dynamic Program
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MTP Strategy

• Instead of solving the Manhattan Tourist problem 
directly, (i.e. the path from (0,0) to (n,m)) we will 
solve a more general problem: find the longest 
path from (0,0) to any arbitrary vertex (i,j).

• If the longest path from (0,0) to (n,m) passes 
through some vertex (i,j), then the path from 
(0,0) to (i,j) must be the longest. Otherwise, you 
could increase your path by changing it.
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MTP: Simple Recursive Program

MT(n,m)

if n = 0 and m = 0

return 0

if n = 0

return MT(0,m-1) + len(edge) from (0,m-1) to (0,m)

if m = 0

return MT(n-1, 0) + len(edge) from (n-1,0) to (n,0)

x  MT(n-1,m) + len(edge) from (n- 1,m) to (n,m)

y  MT(n,m-1) + len(edge) from (n,m-1) to (n,m)

return max{x,y}

It computes the 
same paths 
multiple times

What’s wrong with this approach?
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S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices 
score plus the weight of the connecting edge in between

MTP: Ordering Evaluations

j
First, fill in the easy ones!
Those 1 block 
from the source
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MTP: Dynamic Programming (cont’d)
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Then grow the solution a 
block at a time while tabulating 
the results for each intersection

Note: We’ll use our table to keep 
track of two things. The value of 
the best path to the given 
intersection, and the direction 
from where it came

First, fill in the easy ones!
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MTP: Dynamic Programming (cont’d)
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Keep growing…
(3 blocks)
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MTP: Dynamic Programming (cont’d)
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And growing…
(4 blocks)
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MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

And growing…
(5 blocks)

12



10/11/2017

7

MTP: Dynamic Programming (cont’d)
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Once the 
“destination” node 
(intersection) is 
reached, we’re done.

Our table will have 
the answer of the 
maximum number of 
attractions stored 
in the entry 
associated with the 
destination.

We use the “links” 
back in the table to 
recover the path.

(Backtracking)

dest
13

MTP: Recurrence

Computing the score for a point (i,j) by the 

recurrence relation:

si, j   =
max 

si-1, j + weight of the edge between (i-1, j) and (i, j) 

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m  for a n by m grid

(You visit all intersections once, and performed 2 tests)

(n = # of rows, m = # of columns)

Path to the intersection from the left

Path to the intersection from above

14
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Manhattan Is Not A Perfect Grid

What about diagonals?

Broadway, Greenwich, etc.

• Easy to fix. Just adds more recursion cases. 

• The score at point B is given by:

sB =
max

sA1 + weight of the edge  (A1, B)

sA2 + weight of the edge  (A2, B)

sA3 + weight of the edge  (A3, B)

B

A3

A1

A2

15

How similar are two strings?

Spell correction

• The user typed “graffe”

Which is closest? 
– graf
– graft
– grail
– giraffe

Computational Biology
• Align two sequences of nucleotides

• Resulting alignment:

Also for Machine Translation, Information Extraction, Speech Recognition

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

16

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
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Minimum Edit Distance

• If each operation has cost of 1

– Distance between these is 5

• If substitutions cost 2 (Levenshtein)

– Distance between them is 8
17

Editing Operations
 Insertion
 Deletion
 Substitution

How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start 
string to the final string:

• Initial state: the word we’re transforming

• Operators: insert, delete, substitute

• Goal state:  the word we’re trying to get to

• Path cost: what we want to minimize: the number of 
edits

18
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Defining Min Edit Distance

• For two strings

– X of length n

– Y of length m

• We define D(i,j)

– the edit distance between X[1..i] and Y[1..j] 

• i.e., the first i characters of X and the first j characters of Y

– The edit distance between X and Y is thus D(n,m)

19

Defining Min Edit Distance 
(Levenshtein)

Initialization
D(i,0) = i

D(0,j) = j

Recurrence Relation:
For each  i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

Termination:
D(N,M) is distance

20
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Min Edit Distance Algorithm
"Calculate Levenshtein edit distance for strings s1 and s2."

len1 = len(s1) # vertically

len2 = len(s2) # horizontally

# Allocate the table

table = [None]*(len2+1)

for i in range(len2+1): table[i] = [0]*(len1+1)

# Initialize the table

for i in range(1, len2+1): table[i][0] = i

for i in range(1, len1+1): table[0][i] = i

# Do dynamic programming

for i in range(1,len2+1):

for j in range(1,len1+1):

if s1[j-1] == s2[i-1]:

d = 0

else:

d = 2

table[i][j] = min(table[i-1][j-1] + d,

table[i-1][j]+1,

table[i][j-1]+1)

21

The Edit Distance Table

# E X E C U T I O N

# 0 1 2 3 4 5 6 7 8 9

I 1

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

22



10/11/2017

12

# E X E C U T I O N

# 0 1 2 3 4 5 6 7 8 9

I 1

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

The Edit Distance Table

23

Edit Distance

# E X E C U T I O N

# 0 1 2 3 4 5 6 7 8 9

I 1 2

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

24
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# E X E C U T I O N

# 0 1 2 3 4 5 6 7 8 9

I 1 2 3 4 5 6 7 6 7 8

N 2 3 4 5 6 7 8 7 8 7

T 3 4 5 6 7 8 7 8 9 8

E 4 3 4 5 6 7 8 9 10 9

N 5 4 5 6 7 8 9 10 11 10

T 6 5 6 7 8 9 8 9 10 11

I 7 6 7 8 9 10 9 8 9 10

O 8 7 8 9 10 11 10 9 8 9

N 9 8 9 10 11 12 11 10 9 8

The Edit Distance Table

25

Applications.

• Basis for Unix diff.

• Speech recognition.

• Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty ; mismatch penalty pq.

• Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

26
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Sequence Alignment:  
Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

• Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

• Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

• Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

  



OPT(i, j)














j if  i  0

min  

xi y j
OPT(i1, j1)

 OPT(i1, j)

 OPT(i, j1)









otherwise

i if  j 0

27

Sequence Alignment:  Algorithm

• Analysis.  (mn) time and space.
• English words or sentences:  m, n   10.
• Computational biology:  m = n = 100,000. 10 billions ops OK, but 

10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}

28
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Sequence Alignment:  Linear Space
Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

• Compute OPT(i, •) from OPT(i-1, •).

• No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) 
space and O(mn) time.

• Clever combination of divide-and-conquer and dynamic 
programming.

• Inspired by idea of Savitch from complexity theory.

29

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  



xiy j

30



10/11/2017

16

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Can compute f (•, j) for any j in O(mn) time and O(m + n) 
space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

31

Space-Efficient Alignment Algorithm

32
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Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute by reversing the edge orientations and inverting 
the roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  



xiy j
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Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute g(•, j) for any j in O(mn) time and O(m + n) 
space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is 
f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

35

Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

36
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n
37

Theorem.  Let T(m, n) = max running time of algorithm on strings 
of length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of 
size (q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  
Running Time Analysis Warmup



T(m, n)    2T(m, n/2)   O(mn)      T(m, n)    O(mn logn)

38
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 
length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)
• O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.
• T(q, n/2) + T(m - q, n/2) time for two recursive calls. 
• Choose constant c so that:

• Base cases: m = 2 or n = 2. 
• Inductive hypothesis:  T(m, n)  2cmn.

Sequence Alignment:  
Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(









  



T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn  T(q, n /2)  T(m q, n /2)

39

Divide-and-Conquer Alignment 
Algorithm

40



10/11/2017

21

Practice

Find the Levenshtein minimum edit distance of the 
words mean and name.

Assume a mismatch penalty of 2, and a gap (indel) 
penalty of 1. 

41


