
10/11/2017

1

COMP 355
Advanced Algorithms

Dynamic Programming:
Manhattan Tourist Problem

Sequence Alignment
Section 6.6-6.7(KT)

1

Yet Another DP Example

Imagine seeking a path
from source to destination
in a Manhattan-like city grid
that maximizes the number
of attractions (*) passed.
With the following caveat–
at every step you must make
progress towards the goal.

We treat the city map as a
graph, with “vertices” at
each corner, and weighted edges along each block. The
weights are the number of attractions along each block.

Destination
*

*

*

*

*

**

* *

*

*

Source

*

Manhattan Tourist Problem (MTP)

2

10/11/2017

2

Manhattan Tourist Problem:
Formulation

Goal: Find the maximum weighted path in a

grid.

Input: A weighted grid G with two distinct

vertices, one labeled “source” and the other

labeled “destination”

Output: A longest path in G from “source” to

“destination”

3

MTP: Greedy Algorithm Is Not Optimal

1 2 5

2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2
promising start,

but leads to

bad choices!

source

dest
18

Greedy Algorithm:
At each step select
the maximum
weight block.

Greed has a short
horizon

21 22

4

10/11/2017

3

MTP as a Dynamic Program

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i
c
o
o
rd

in
a
te

13

source

dest

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

95

15

23

0

20

3

4

5

MTP Strategy

• Instead of solving the Manhattan Tourist problem
directly, (i.e. the path from (0,0) to (n,m)) we will
solve a more general problem: find the longest
path from (0,0) to any arbitrary vertex (i,j).

• If the longest path from (0,0) to (n,m) passes
through some vertex (i,j), then the path from
(0,0) to (i,j) must be the longest. Otherwise, you
could increase your path by changing it.

6

10/11/2017

4

MTP: Simple Recursive Program

MT(n,m)

if n = 0 and m = 0

return 0

if n = 0

return MT(0,m-1) + len(edge) from (0,m-1) to (0,m)

if m = 0

return MT(n-1, 0) + len(edge) from (n-1,0) to (n,0)

x MT(n-1,m) + len(edge) from (n- 1,m) to (n,m)

y MT(n,m-1) + len(edge) from (n,m-1) to (n,m)

return max{x,y}

It computes the
same paths
multiple times

What’s wrong with this approach?

7

1

5

0 1

0

1

i

source

1

5

S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices
score plus the weight of the connecting edge in between

MTP: Ordering Evaluations

j
First, fill in the easy ones!
Those 1 block
from the source

8

10/11/2017

5

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3
3

-5

j

Then grow the solution a
block at a time while tabulating
the results for each intersection

Note: We’ll use our table to keep
track of two things. The value of
the best path to the given
intersection, and the direction
from where it came

First, fill in the easy ones!

9

MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8

103

5

-5

9

13

1-5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

Keep growing…
(3 blocks)

10

10/11/2017

6

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

And growing…
(4 blocks)

11

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

And growing…
(5 blocks)

12

10/11/2017

7

MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

Once the
“destination” node
(intersection) is
reached, we’re done.

Our table will have
the answer of the
maximum number of
attractions stored
in the entry
associated with the
destination.

We use the “links”
back in the table to
recover the path.

(Backtracking)

dest
13

MTP: Recurrence

Computing the score for a point (i,j) by the

recurrence relation:

si, j =
max

si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m for a n by m grid

(You visit all intersections once, and performed 2 tests)

(n = # of rows, m = # of columns)

Path to the intersection from the left

Path to the intersection from above

14

10/11/2017

8

Manhattan Is Not A Perfect Grid

What about diagonals?

Broadway, Greenwich, etc.

• Easy to fix. Just adds more recursion cases.

• The score at point B is given by:

sB =
max

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

15

How similar are two strings?

Spell correction

• The user typed “graffe”

Which is closest?
– graf
– graft
– grail
– giraffe

Computational Biology
• Align two sequences of nucleotides

• Resulting alignment:

Also for Machine Translation, Information Extraction, Speech Recognition

AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

16

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

10/11/2017

9

Minimum Edit Distance

• If each operation has cost of 1

– Distance between these is 5

• If substitutions cost 2 (Levenshtein)

– Distance between them is 8
17

Editing Operations
 Insertion
 Deletion
 Substitution

How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start
string to the final string:

• Initial state: the word we’re transforming

• Operators: insert, delete, substitute

• Goal state: the word we’re trying to get to

• Path cost: what we want to minimize: the number of
edits

18

10/11/2017

10

Defining Min Edit Distance

• For two strings

– X of length n

– Y of length m

• We define D(i,j)

– the edit distance between X[1..i] and Y[1..j]

• i.e., the first i characters of X and the first j characters of Y

– The edit distance between X and Y is thus D(n,m)

19

Defining Min Edit Distance
(Levenshtein)

Initialization
D(i,0) = i

D(0,j) = j

Recurrence Relation:
For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1

D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)

Termination:
D(N,M) is distance

20

10/11/2017

11

Min Edit Distance Algorithm
"Calculate Levenshtein edit distance for strings s1 and s2."

len1 = len(s1) # vertically

len2 = len(s2) # horizontally

Allocate the table

table = [None]*(len2+1)

for i in range(len2+1): table[i] = [0]*(len1+1)

Initialize the table

for i in range(1, len2+1): table[i][0] = i

for i in range(1, len1+1): table[0][i] = i

Do dynamic programming

for i in range(1,len2+1):

for j in range(1,len1+1):

if s1[j-1] == s2[i-1]:

d = 0

else:

d = 2

table[i][j] = min(table[i-1][j-1] + d,

table[i-1][j]+1,

table[i][j-1]+1)

21

The Edit Distance Table

E X E C U T I O N

0 1 2 3 4 5 6 7 8 9

I 1

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

22

10/11/2017

12

E X E C U T I O N

0 1 2 3 4 5 6 7 8 9

I 1

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

The Edit Distance Table

23

Edit Distance

E X E C U T I O N

0 1 2 3 4 5 6 7 8 9

I 1 2

N 2

T 3

E 4

N 5

T 6

I 7

O 8

N 9

24

10/11/2017

13

E X E C U T I O N

0 1 2 3 4 5 6 7 8 9

I 1 2 3 4 5 6 7 6 7 8

N 2 3 4 5 6 7 8 7 8 7

T 3 4 5 6 7 8 7 8 9 8

E 4 3 4 5 6 7 8 9 10 9

N 5 4 5 6 7 8 9 10 11 10

T 6 5 6 7 8 9 8 9 10 11

I 7 6 7 8 9 10 9 8 9 10

O 8 7 8 9 10 11 10 9 8 9

N 9 8 9 10 11 12 11 10 9 8

The Edit Distance Table

25

Applications.

• Basis for Unix diff.

• Speech recognition.

• Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty ; mismatch penalty pq.

• Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

26

10/11/2017

14

Sequence Alignment:
Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

• Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

• Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

• Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT(i, j)

j if i 0

min

xi y j
OPT(i1, j1)

 OPT(i1, j)

 OPT(i, j1)

otherwise

i if j 0

27

Sequence Alignment: Algorithm

• Analysis. (mn) time and space.
• English words or sentences: m, n 10.
• Computational biology: m = n = 100,000. 10 billions ops OK, but

10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, ,) {

for i = 0 to m

M[0, i] = i

for j = 0 to n

M[j, 0] = j

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}

28

10/11/2017

15

Sequence Alignment: Linear Space
Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

• Compute OPT(i, •) from OPT(i-1, •).

• No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n)
space and O(mn) time.

• Clever combination of divide-and-conquer and dynamic
programming.

• Inspired by idea of Savitch from complexity theory.

29

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

xiy j

30

10/11/2017

16

Edit distance graph.

• Let f(i, j) be shortest path from (0,0) to (i, j).

• Can compute f (•, j) for any j in O(mn) time and O(m + n)
space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j

31

Space-Efficient Alignment Algorithm

32

10/11/2017

17

Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute by reversing the edge orientations and inverting
the roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

xiy j

33

Edit distance graph.

• Let g(i, j) be shortest path from (i, j) to (m, n).

• Can compute g(•, j) for any j in O(mn) time and O(m + n)
space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j

34

10/11/2017

18

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

35

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

n / 2

q

36

10/11/2017

19

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

q

n / 2

m-n
37

Theorem. Let T(m, n) = max running time of algorithm on strings
of length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of
size (q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment:
Running Time Analysis Warmup

T(m, n) 2T(m, n/2) O(mn) T(m, n) O(mn logn)

38

10/11/2017

20

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
• O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
• T(q, n/2) + T(m - q, n/2) time for two recursive calls.
• Choose constant c so that:

• Base cases: m = 2 or n = 2.
• Inductive hypothesis: T(m, n) 2cmn.

Sequence Alignment:
Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(

T(m, 2) cm

T(2, n) cn

T(m, n) cmn T(q, n /2) T(m q, n /2)

39

Divide-and-Conquer Alignment
Algorithm

40

10/11/2017

21

Practice

Find the Levenshtein minimum edit distance of the
words mean and name.

Assume a mismatch penalty of 2, and a gap (indel)
penalty of 1.

41

