

Manhattan Tourist Problem: Formulation

<u>Goal</u>: Find the maximum weighted path in a grid.

Input: A weighted grid **G** with two distinct vertices, one labeled "*source*" and the other labeled "*destination*"

<u>Output</u>: A longest path in **G** from "source" to "destination"

MTP Strategy

- Instead of solving the Manhattan Tourist problem directly, (i.e. the path from (0,0) to (n,m)) we will solve a more general problem: find the longest path from (0,0) to any arbitrary vertex (i,j).
- If the longest path from (0,0) to (n,m) passes through some vertex (i,j), then the path from (0,0) to (i,j) must be the longest. Otherwise, you could increase your path by changing it.

3

Defining Min Edit Distance

- For two strings
 - X of length n
 - Y of length m
- We define D(*i*,*j*)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Defining Min Edit Distance (Levenshtein)

Initialization D(i,0) = i D(0,j) = jRecurrence Relation: For each i = 1...MFor each j = 1...N $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$ $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i-1,j-1) + 1 \\ D(i-1,j-1) + 1 \end{cases}$ Termination: D(N,M) is distance

20

Min Edit Distance Algorithm

```
"Calculate Levenshtein edit distance for strings s1 and s2."
   len1 = len(s1) # vertically
   len2 = len(s2) # horizontally
   # Allocate the table
   table = [None]*(len2+1)
   for i in range(len2+1): table[i] = [0]*(len1+1)
   # Initialize the table
   for i in range(1, len2+1): table[i][0] = i
   for i in range(1, len1+1): table[0][i] = i
   # Do dynamic programming
   for i in range(1,len2+1):
       for j in range(1,len1+1):
           if s1[j-1] == s2[i-1]:
               d = 0
           else:
               d = 2
           table[i][j] = min(table[i-1][j-1] + d,
                            table[i-1][j]+1,
                             table[i][j-1]+1)
```

# E X E C U T I O N # 0 1 2 3 4 5 6 7 8 9 I 1 2 3 4 5 6 7 8 9 I 1 - - - - - - 1 1 1 1 1 - </th <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th>			1			1					
# 0 1 2 3 4 5 6 7 8 9 I 1		#	E	Х	E	C	U	Т	Ι	0	N
I 1 Image: Constraint of the sector of	#	0	1	2	3	4	5	6	7	8	9
N 2	1	1									
T 3	Ν	2									
E 4	Т	3									
N 5	Е	4									
T 6	Ν	5									
I 7	Т	6									
0 8	I	7									
	0	8									
N 9	Ν	9									

	Ed	it C	Dist	and	e	D(<i>i,j</i>) =	= min	D(i-1,j) D(i,j-1) D(i-1,j-	+ 1) + 1 1) + [2; if S ₁ 0; if S ₁	(i) ≠ S ₂ (j) (i) = S ₂ (j)
	#	E	x	E	С	U	т	1	0	N]
#	0	1	2	3	4	5	6	7	8	9	
I	1	2									
N	2										
Т	3										
E	4										
Ν	5										
Т	6										
I	7										
0	8										
Ν	9										
											24

The Edit Distance Table

	#	E	X	E	С	U	Т	Ι	0	Ν
#	0	1	2	3	4	5	6	7	8	9
Ι	1	2	3	4	5	6	7	6	7	8
Ν	2	3	4	5	6	7	8	7	8	7
Т	3	4	5	6	7	8	7	8	9	8
Ε	4	3	4	5	6	7	8	9	10	9
Ν	5	4	5	6	7	8	9	10	11	10
Т	6	5	6	7	8	9	8	9	10	11
Ι	7	6	7	8	9	10	9	8	9	10
0	8	7	8	9	10	11	10	9	8	9
N	9	8	9	10	11	12	11	10	9	8

27

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_i$.

- Case 1: OPT matches x_i-y_i.
 - pay mismatch for x_i - y_j + min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1\,x_2\ldots x_{i\text{-}1}$ and $y_1\,y_2\ldots y_j$
- Case 2b: OPT leaves y_i unmatched.
 - pay gap for y_j and min cost of aligning $x_1\,x_2\ldots x_i$ and $y_1\,y_2\ldots y_{j\text{-}1}$

Sequence Alignment: Algorithm Sequence-Alignment(m, n, $x_1x_2...x_m$, $y_1y_2...y_n$, δ , α) { for i = 0 to m $M[0, i] = i\delta$ for j = 0 to n $M[j, 0] = j\delta$ for i = 1 to m for j = 1 to n $M[i, j] = min(\alpha[x_i, y_j] + M[i-1, j-1]),$ $\delta + M[i-1, j],$ $\delta + M[i, j-1])$ return M[m, n] } Analysis. $\Theta(mn)$ time and space. English words or sentences: m, $n \leq 10$. Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array? 28

29

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

- Compute OPT(i, •) from OPT(i-1, •).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Space-Efficient Alignment Algorithm

Sequence Alignment: Linear Space Edit distance graph. Let g(i, j) be shortest path from (i, j) to (m, n). Can compute by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n) = \max running time of algorithm on strings of length at most m and n. <math>T(m, n) = O(mn \log n)$.

 $T(m,n) \leq 2T(m, n/2) + O(mn) \implies T(m,n) = O(mn \log n)$

Remark. Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute f($\bullet,$ n/2) and g ($\bullet,$ n/2) and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that: $T(m, 2) \leq cm$

 $T(2, n) \leq cn$ $T(m, n) \leq cmn + T(q, n/2) + T(m-q, n/2)$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \leq 2cmn$.

39

Divide-and-Conquer Alignment Algorithm Divide-and-Conquer-Alignment(X,Y) Let m be the number of symbols in XLet n be the number of symbols in YIf $m \leq 2$ or $n \leq 2$ then Compute optimal alignment using Alignment(X,Y) Call Space-Efficient-Alignment(X, Y[1:n/2]), obtaining array B Call Backward-Space-Efficient-Alignment (X, Y[n/2 + 1:n]), obtaining array B'Let q be the index minimizing B[q, 1] + B'[q, n]Add (q, n/2) to global list P Divide-and-Conquer-Alignment (X[1:q], Y[1:n/2])Divide-and-Conquer-Alignment (X[q+1:n], Y[n/2+1:n])Return P Rhodes College

