
10/18/2017

1

COMP 355
Advanced Algorithms

1

All-Pairs Shortest Paths
Floyd-Warshall Algorithm

Section 25.2 (CLRS): Not in KT

2

• Generalization of single-source shortest path: computing 
shortest path between all pairs of vertices

• Let G = (V, E) be a directed graph with edge weights.

• Find the cost of the shortest path between all pairs of vertices 
in G. 

All-Pairs Shortest Paths



10/18/2017

2

3

• If no negative weights:

– Run Dijkstra’s with each vertex as the source

– Runtime: O(VE lg V) (if we use binary min-heap 
implementation)

• If negative weights, but no negative cycles:

– Run Bellman-Ford algorithm once from each vertex

– Runtime: O(V2E) (on a dense graph = O(V4)

• Can we do better (assuming negative edges)?
– Yes! O(V3) using dynamic programming 

Possible Algorithms

4

• Input Format:
– input is an n x n matrix w of edge weights, which are based on the 

edge weights in the digraph.

– We let wij denote the entry in row i and column j of w.

• Output Format:
– n x n distance matrix D = dij where dij = δ(i, j), the shortest path from 

vertex i to vertex j.

– To recover the actual shortest path, we can compute an auxillary
matrix mid[i, j] where the value of mid[i, j] will be a vertex that is 
somewhere along the path from i to j. (null if no such vertex exists)

Input/Output



10/18/2017

3

5

Observations

6

Floyd-Warshall Algorithm

Running Time: Θ(n3)
Space Required: Θ(n2)



10/18/2017

4

7

Example (on board)

8

Floyd-Warshall Algorithm: Example



10/18/2017

5

9

Proof of Correctness

10

Applications



10/18/2017

6

11

Other All-Pairs Shortest Paths Algorithms

12

Apply the Floyd-Warshall algorithm, which finds the 
shortest paths and their lengths, to the following graph.

Apply the Bellman-Ford algorithm to this graph assuming 
that the start node is A.

Practice


