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COMP 355
Advanced Algorithms

Network Flows: 
Basics & Ford-Fulkerson Algorithm

Section 7.1-7.3 (KT)
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Def.  Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with 
nonnegative edge weights.

• Think of the edges as “pipes” that are capable of carrying 
some sort of “stuff.”

• Each edge of the network has a given capacity

• How much flow we can push from a designated source node 
to a designated sink node?

Network Flows
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Maximum Flow and Minimum Cut
Max flow and min cut.

• Two very rich algorithmic problems.

• Cornerstone problems in combinatorial optimization.

• Beautiful mathematical duality.

Nontrivial applications / reductions.

• Data mining.

• Open-pit mining. 

• Project selection.

• Airline scheduling.

• Bipartite matching.

• Baseball elimination.

• Image segmentation.

• Network connectivity.

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• And many more . . .
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• Abstraction for material flowing through the edges.

• G = (V, E) = directed graph, no parallel edges.

• Two distinguished nodes:  s = source, t = sink. 

• c(e) = capacity of edge e. (non-negative) 

Flow Network
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Given an s-t network, a flow is a function f that maps each edge 
to a nonnegative real number and satisfies the following 
properties:

• Capacity Constraint: For all e ∈ E, f(u, v) ≤ c(u, v) = c(e)

• Flow conservation (or flow balance): For all v ∈ V \ {s, t}, the 
sum of flow along edges into v equals the sum of flows along 
edges out of v. 𝑓𝑖𝑛 𝑣 = 𝑓𝑜𝑢𝑡 𝑣

If edge (u,v) not in E, then f(u, v) = 0

Flows, Capacities, and Conservation

6

𝑓𝑖𝑛 𝑣 =  

𝑢 ∈𝑉

𝑓(𝑢, 𝑣) 𝑓𝑜𝑢𝑡 𝑣 =  

𝑤 ∈𝑉

𝑓(𝑣,𝑤)
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Def.  An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Flows
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Def.  An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Define an s-t path to be any simple path from s to t.

Ex. <s, a, t> <s, b, a, c, t> and <s, d, c, t> are all examples of s-t 
paths.

Def. A path-based flow is a function that assigns each s-t path a 
nonnegative real number such that, for every edge (u, v) ∈ E, the 
sum of the flows on all the paths containing this edge is at most 
c(u, v).

Path-Based Flows

10
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No need to provide a flow conservation constraint (each path 
that carries a flow into a vertex (excluding s and t), carries an 
equivalent amount of flow out of that vertex)

Path-Based Flows

(a) An edge-based flow and (b) its path-based 
equivalent.
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Def. The value of a path-based flow is defined to be the total 
sum of all the flows on all the s-t paths of the network. 

Claim: Given an s-t network G, under the assumption that there 
are no edges entering s or leaving t, G has an edge-based flow of 
value x if and only if G has a path-based flow of value x.

Path-Based Flows

12
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Multi-source, multi-sink networks

Reduction from (a) multi-source/multi-sink to 
(b) single-source/single-sink.

13

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.
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Residual Graph

Original edge:  e = (u, v)   E.
• Flow f(e), capacity c(e).

Residual edge.
• "Undo" flow sent.
• e = (u, v) and eR = (v, u).
• Residual capacity:

Residual graph:  Gf = (V, Ef ).
• Residual edges with positive residual capacity.
• Ef = {e : f(e) < c(e)}   {eR : c(e) > 0}.
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Residual Graph
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Augmenting Paths

19

Consider a network G, let f be a flow in G, and let Gf be the associated residual 
network.

Def. An augmenting path is a simple path P from s to t in Gf .

Def. The residual capacity (also called the bottleneck capacity) of the path is 
the minimum capacity of any edge on the path. It is denoted cf (P).

Recall: all the edges of Gf are of strictly positive capacity, so cf (P) > 0.

By pushing cf (P) units of flow along each edge of the path, we obtain a valid 
flow in Gf , and by the previous lemma, adding this to f results in a valid flow in 
G of strictly higher value.

Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P) 

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E  f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

20
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

G:

s

2

3

4

5 t1

6

Gf:

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16

26



10/20/2017

14

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts
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Capacity = 10 + 5 + 15
= 30
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

cap(A, B)    c(e)
e out of A


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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Capacity = 9 + 15 + 8 + 30
= 62

s
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e out of A



Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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