
10/20/2017

1

COMP 355
Advanced Algorithms

Network Flows:
Basics & Ford-Fulkerson Algorithm

Section 7.1-7.3 (KT)

1

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

2

10/20/2017

2

Def. Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with
nonnegative edge weights.

• Think of the edges as “pipes” that are capable of carrying
some sort of “stuff.”

• Each edge of the network has a given capacity

• How much flow we can push from a designated source node
to a designated sink node?

Network Flows

3

Maximum Flow and Minimum Cut
Max flow and min cut.

• Two very rich algorithmic problems.

• Cornerstone problems in combinatorial optimization.

• Beautiful mathematical duality.

Nontrivial applications / reductions.

• Data mining.

• Open-pit mining.

• Project selection.

• Airline scheduling.

• Bipartite matching.

• Baseball elimination.

• Image segmentation.

• Network connectivity.

• Network reliability.

• Distributed computing.

• Egalitarian stable matching.

• Security of statistical data.

• Network intrusion detection.

• Multi-camera scene reconstruction.

• And many more . . .

4

10/20/2017

3

• Abstraction for material flowing through the edges.

• G = (V, E) = directed graph, no parallel edges.

• Two distinguished nodes: s = source, t = sink.

• c(e) = capacity of edge e. (non-negative)

Flow Network

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

5

Given an s-t network, a flow is a function f that maps each edge
to a nonnegative real number and satisfies the following
properties:

• Capacity Constraint: For all e ∈ E, f(u, v) ≤ c(u, v) = c(e)

• Flow conservation (or flow balance): For all v ∈ V \ {s, t}, the
sum of flow along edges into v equals the sum of flows along
edges out of v. 𝑓𝑖𝑛 𝑣 = 𝑓𝑜𝑢𝑡 𝑣

If edge (u,v) not in E, then f(u, v) = 0

Flows, Capacities, and Conservation

6

𝑓𝑖𝑛 𝑣 =

𝑢 ∈𝑉

𝑓(𝑢, 𝑣) 𝑓𝑜𝑢𝑡 𝑣 =

𝑤 ∈𝑉

𝑓(𝑣,𝑤)

10/20/2017

4

Def. An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0



f (e)
e in to v

  f (e)
e out of v





0  f (e)  c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

.)()(
ofout


se

effv

4

7

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

8

Def. An s-t flow is a function that satisfies:

• For each e  E: (capacity)

• For each v  V – {s, t}: (conservation)

Def. The value of a flow f is:



f (e)
e in to v

  f (e)
e out of v





0  f (e)  c(e)

.)()(
ofout


se

effv

10/20/2017

5

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

9

Define an s-t path to be any simple path from s to t.

Ex. <s, a, t> <s, b, a, c, t> and <s, d, c, t> are all examples of s-t
paths.

Def. A path-based flow is a function that assigns each s-t path a
nonnegative real number such that, for every edge (u, v) ∈ E, the
sum of the flows on all the paths containing this edge is at most
c(u, v).

Path-Based Flows

10

10/20/2017

6

No need to provide a flow conservation constraint (each path
that carries a flow into a vertex (excluding s and t), carries an
equivalent amount of flow out of that vertex)

Path-Based Flows

(a) An edge-based flow and (b) its path-based
equivalent.

11

Def. The value of a path-based flow is defined to be the total
sum of all the flows on all the s-t paths of the network.

Claim: Given an s-t network G, under the assumption that there
are no edges entering s or leaving t, G has an edge-based flow of
value x if and only if G has a path-based flow of value x.

Path-Based Flows

12

10/20/2017

7

Multi-source, multi-sink networks

Reduction from (a) multi-source/multi-sink to
(b) single-source/single-sink.

13

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

14

10/20/2017

8

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

15

Towards a Max Flow Algorithm
Greedy algorithm.

• Start with f(e) = 0 for all edge e  E.

• Find an s-t path P where each edge has f(e) < c(e).

• Augment flow along path P.

• Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality  global optimality

16

10/20/2017

9

Residual Graph

Original edge: e = (u, v)  E.
• Flow f(e), capacity c(e).

Residual edge.
• "Undo" flow sent.
• e = (u, v) and eR = (v, u).
• Residual capacity:

Residual graph: Gf = (V, Ef).
• Residual edges with positive residual capacity.
• Ef = {e : f(e) < c(e)}  {eR : c(e) > 0}.

u v11

residual capacity

6
residual capacity

u v17

6

capacity

flow



c f (e) 
c(e) f (e) if e E

f (e) if eR  E





17

Residual Graph

18

10/20/2017

10

Augmenting Paths

19

Consider a network G, let f be a flow in G, and let Gf be the associated residual
network.

Def. An augmenting path is a simple path P from s to t in Gf .

Def. The residual capacity (also called the bottleneck capacity) of the path is
the minimum capacity of any edge on the path. It is denoted cf (P).

Recall: all the edges of Gf are of strictly positive capacity, so cf (P) > 0.

By pushing cf (P) units of flow along each edge of the path, we obtain a valid
flow in Gf , and by the previous lemma, adding this to f results in a valid flow in
G of strictly higher value.

Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

20

10/20/2017

11

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

21

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow

capacity

22

10/20/2017

12

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

s

2

3

4

5 t10 9

4

1062

Gf:

10 8

10

8 8

8

X X

X

0

Flow value = 0

capacity

residual capacity

flow

23

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

8

0

0

0 0 8

8

0 0

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

10

2
10

X

X

X2X

Flow value = 8

24

10/20/2017

13

0

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

G:

s

2

3

4

5 t

4

2

Gf:

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10

25

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

G:

s

2

3

4

5 t1

6

Gf:

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16

26

10/20/2017

14

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

2

8

8 8 10

8

0

G:

s

2

3

4

5 t

62

Gf:

10

10

8

6

8

8

2

2 1

2

8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18

27

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19

28

10/20/2017

15

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

29

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A



cap(A, B)  c(e)
e out of A



30

10/20/2017

16

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Capacity = 9 + 15 + 8 + 30
= 62

s



cap(A, B)  c(e)
e out of A



Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28

32

