COMP 355
Advanced Algorithms

Network Flows:
Basics & Ford-Fulkerson Algorithm
Section 7.1-7.3 (KT)

'Bhurlnlltgt

—1815—

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

10/20/2017

Network Flows

Def. Name of a variety of related graph optimization problems

Given a flow network, which is essentially a directed graph with
nonnegative edge weights.

* Think of the edges as “pipes” that are capable of carrying
some sort of “stuff.”

* Each edge of the network has a given capacity

* How much flow we can push from a designated source node
to a designated sink node?

Maximum Flow and Minimum Cut

Max flow and min cut.

* Two very rich algorithmic problems.

* Cornerstone problems in combinatorial optimization.
* Beautiful mathematical duality.

Nontrivial applications / reductions.

« Data mining. * Network reliability.

* Open-pit mining. e Distributed computing.

* Project selection. * Egalitarian stable matching.
* Airline scheduling. * Security of statistical data.

* Bipartite matching. » Network intrusion detection.

e Baseball elimination.
* Image segmentation.

o * And many more...
* Network connectivity.

e Multi-camera scene reconstruction.

10/20/2017

Flow Network

* Abstraction for material flowing through the edges.
* G=(V, E)=directed graph, no parallel edges.

* Two distinguished nodes: s = source, t = sink.

* c(e) = capacity of edge e. (non-negative)

10 2 15 15

source s 5 4\ 8 \GL 10
™~ 1

4 6 15 10

15
capacity -
4 30 7

10

t) sink

Flows, Capacities, and Conservation

Given an s-t network, a flow is a function f that maps each edge
to a nonnegative real number and satisfies the following
properties:

* Capacity Constraint: For alle € E, f(u, v) < c(u, v) = c(e)

* Flow conservation (or flow balance): For allv e V\ {s, t}, the
sum of flow along edges into v equals the sum of flows along
edgesoutofv. f™(v) = fOUt(v)

If edge (u,v) notin E, then f(u,v) =0

fr@y=) fav) =) fEw)

uev w eV

10/20/2017

Flows

Def. An s-t flow is a function that satisfies:

* ForeacheeE: 0< f(e)<c(e) (capacity)
e ForeachveV-{s t: 2f(® = 2 (conservation)
eintov e out of v
Def. The value of a flow fis: v(f)= Y f(e).
Oeoutofs
2 9 5
4 . 0
10

»
w o
e
0~
:mj
=
5 »

-

40 5 15 0

capacity — 15
flow — o o
Value =4
4 30 7

Flows

Def. An s-t flow is a function that satisfies:

e Foreache cE: 0< f(e)<c(e) (capacity)
« ForeachveV-{s,t}: 2 = Zf® (conservation)
eintov e out of v
Def. The value of a flow f is: v(f)= > f(e).
 eoutof's
2 9 5
10 0 6
10

10
10

capacity — 15
flow — 11
H Value =24
4 30 7

10/20/2017

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

10

4 0
J&x\
\‘/\ ,
40
capacity — 15 10
flow — 14
14 Value =28
4 30 7
9

Path-Based Flows

Define an s-t path to be any simple path from s to t.

Ex.<s,a,t><s, b, a, ¢, t>and <s, d, ¢, t> are all examples of s-t
paths.

Def. A path-based flow is a function that assigns each s-t path a
nonnegative real number such that, for every edge (u, v) € E, the
sum of the flows on all the paths containing this edge is at most

c(u, v)- N = N
Yy ~
& 5 10 A 8

G &)) t)
N /3
10
—d—

10

10/20/2017

Path-Based Flows

No need to provide a flow conservation constraint (each path
that carries a flow into a vertex (excluding s and t), carries an
equivalent amount of flow out of that vertex)

(a) (b}

(a) An edge-based flow and (b) its path-based
equivalent.

11

Path-Based Flows

Def. The value of a path-based flow is defined to be the total
sum of all the flows on all the s-t paths of the network.

Claim: Given an s-t network G, under the assumption that there
are no edges entering s or leaving t, G has an edge-based flow of
value x if and only if G has a path-based flow of value x.

12

10/20/2017

Multi-source,

."f"\ -\".

s
5

EE =5
e ™
=t

(a)

multi-sink networks

(b)

Reduction from (a) multi-source/multi-sink to
(b) single-source/single-sink.

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for all edge e € E.
Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.
Repeat until you get stuck.

0 Flow value =0

14

10/20/2017

Greedy algorithm.
Start with f(e) = 0 for all edge e € E.
Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.
Repeat until you get stuck.

20 X
20

10

10

30 ¥ 20

20

\/x Flowalue =20,
v

15

Greedy algorithm.
Start with f(e) = 0 for all edge e € E.
Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.
Repeat until you get stuck.

locally optimality %> global optimality

10/20/2017

Original edge: e =(u,v) € E.
* Flow f(e), capacity c(e).

Residual edge.

¢ "Undo" flow sent.

e e=(u,v)ander = (v, u).
* Residual capacity:

_{c(e)— fle) if ecE
@ =1 5y it ek
Residual graph: Gg = (V, E).

* Residual edges with positive residual capacity.
* E={e:f(e)<c(e)} v {er:c(e) >0}

Forward edges: For each edge (u,v) for which f(u,v) < e(u,v), create an edge (u,v) in
Gy and assign it the capacity ef(u,v) = e(u,v) — f(u,v). Intuitively, this edge signifies
that we can add up to ey(u, v) additional units of flow to this edge without violating the
original capacity constraint.

Backward edges: For each edge (u,v) for which f(u,v) > 0, create an edge (v,u) in Gy
and assign it a capacity of cf(v,u) = f(u,v). Intuitively, this edge signifies that we can
cancel up to f(u,v) units of flow along (u,v). Conceptually, by pushing positive flow
along the reverse edge (v, u) we are decreasing the flow along the original edge (u,v).

(a): A flow f in network G (b): Residual network G'¢

A flow f and the residual network Gy.
18

10/20/2017

Augmenting Paths

Consider a network G, let f be a flow in G, and let G; be the associated residual
network.

Def. An augmenting path is a simple path P from s to tin G;.

Def. The residual capacity (also called the bottleneck capacity) of the path is
the minimum capacity of any edge on the path. It is denoted ¢;(P).

Recall: all the edges of G; are of strictly positive capacity, so ¢;(P) > 0.

By pushing ¢; (P) units of flow along each edge of the path, we obtain a valid
flow in G¢, and by the previous lemma, adding this to f results in a valid flow in
G of strictly higher value.

~
{1}

_1"‘ 5/5

8/8 / 5/ ll} -8/8
ﬁ\\ /3N (% //>
- 10

—d)

(a): Augmenting path of capacity 3 (b): The flow after augmentation

Augmenting Path Algorithm

Augment (f, c, P) {
b <« bottleneck (P)
foreach e € P {

if (e € E) f(e) « f(e) + b forward edge
else f(e?) « f(e) - b reverse edge
}
return f

Ford-Fulkerson(G, s, t, c) {
foreach e € E f(e) « 0
G; « residual graph

while (there exists augmenting path P) {
f ¢« Augment(f, c, P)
update G;

}

return £

10/20/2017

10

Ford-Fulkerson Algorithm

o b \i \@

Ford-Fulkerson Algorithm

2 flow
/ capacity
0/

Flow value =0

22

10/20/2017

11

Ford-Fulkerson Algorithm
0
2 4 2 flow .
. . E/’f\n . ?\O.// capacity
2 0 8 60 10
O/ 0 /L O\J\ 8@\3
s 10 ® 9 O, 10 t

Flow value =0

reS|dua| capacity
G
G// 10 @/ 9 \D

Ford-Fulkerson Algorithm

2 4 4
G: 10 % 8
2 R 8
l 2
0 Q 10 x
S 10 ©) 9

Flow value = 8

24

10/20/2017

12

Ford-Fulkerson Algorithm

2 4
G: 10 8
2 9 8 6 R
6
R 6 l 10
5 10 G) O 10 t

Flow value = 10

25

KS
2 X
0
% 8 l s\i
S 10 ©) 9

Flow value = 16

10/20/2017

13

Ford-Fulkerson Algorithm

2

2 4 4
R
8

7 X9

20 66 10
% 9 l ng\ 10\D
@/ 10 ® 9 ® 10 :

Flow value = 18

27

2 66 10
9 l 9 \i 10
s 10 O, 9 ® 10 t

Flow value = 19
3
2 1 4
o /i/\ 1 ?
10 2 7 6 1

| A QJ
s 1 ©) 9 5 10 t
<< — ©

28

10/20/2017

14

Ford-Fulkerson Algorithm

3

2 4 4
G: 10 7 9
10 20 8 66 10
9 l 9 \J\ 10
s 10 ® 9 ® 10 t
Cut capacity = 19 Flow value = 19

3
2 1 4
G 1 9
10 2 7 \ 6 1
/L 9 % 10 t

s 1 3

29

Cuts

Def. An s-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is: cap(A,B) = X c(e)

e out of A
/?\ 9
10 15
5

4
S | : J@(\
4
1
Capacity =10+ 5 + 15
4 30 7 =30
30

10/20/2017

15

10/20/2017

Def. An s-t cutis a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is: cap(A,B) = X c(e)

e out of A
9
15
6
30

15 10
> 10
15 10

16

