
10/23/2017

1

COMP 355
Advanced Algorithms

More on Network Flows
Section 7.1-7.3, 7.5-7.6 (KT)

1

Augmenting Path Algorithm
Augment(f, c, P) {

b  bottleneck(P)

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(eR)  f(e) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e  E f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

forward edge

reverse edge

2

10/23/2017

2

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount
leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24



f (e)
e out of A

  f (e)
e in to A

  v(f)

4

A

3

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount
leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



f (e)
e out of A

  f (e)
e in to A

  v(f)

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

4

10/23/2017

3

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount
leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



f (e)
e out of A

  f (e)
e in to A

  v(f)

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

5

Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.



f (e)
e out of A

  f (e) v(f)
e in to A

 .



v(f)  f (e)
e out of s




v A

 f (e)
e out of v

  f (e)
e in to v












 f (e)
e out of A

  f (e).
e in to A



by flow conservation, all terms
except v = s are 0

6

10/23/2017

4

Flows and Cuts
Weak duality. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30  Flow value  30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

7

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we
have v(f)  cap(A, B).

Pf.

Flows and Cuts



v(f)  f (e)
e out of A

  f (e)
e in to A



 f (e)
e out of A



 c(e)
e out of A



 cap(A, B)

s

t

A B

7

6

8

4

8

10/23/2017

5

Certificate of Optimality
Max-Flow/Min-Cut Theorem.
Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Cut capacity = 28  Flow value  28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

9

Max-Flow Min-Cut Theorem
Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal
to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the following are equivalent.

(i) There exists a cut (A, B) such that v(f) = cap(A, B).

(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)  (ii) This was the corollary to weak duality lemma.

(ii)  (iii) We show contrapositive.

• Let f be a flow. If there exists an augmenting path, then we can improve f by sending
flow along path.

10

10/23/2017

6

Proof of Max-Flow Min-Cut Theorem
(iii)  (i)

• Let f be a flow with no augmenting paths.

• Let A be set of vertices reachable from s in residual graph.

• By definition of A, s  A.

• By definition of f, t  A.



v(f)  f (e)
e out of A

  f (e)
e in to A



 c(e)
e out of A



 cap(A, B)

original network

s

t

A B

11

Running Time
Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*)  mC iterations.
Pf. Each augmentation increases value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. ▪

12

10/23/2017

7

Ford-Fulkerson: Exponential Number
of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

m, n, and log C

13

Choosing Good Augmenting Paths
Use care when selecting augmenting paths.
• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.
• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
• Can find augmenting paths efficiently.
• Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
• Max bottleneck capacity.
• Sufficiently large bottleneck capacity.
• Fewest number of edges.

14

10/23/2017

8

Capacity Scaling
Intuition. Choosing path with highest bottleneck capacity increases flow by
max possible amount.

• The sum of capacities of the edges leaving s is

• Define  to be the largest power of 2, such that  ≤ C

• Let Gf () be the subgraph of the residual graph consisting of only arcs
with capacity at least .

110

s

4

2

t
1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)
15

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

foreach e  E f(e)  0

  smallest power of 2 greater than or equal to C

Gf  residual graph

while (  1) {

Gf()  -residual graph

while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)

update Gf()

}

   / 2

}

return f

}

16

10/23/2017

9

Capacity Scaling: Correctness
Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.

• By integrality invariant, when  = 1  Gf() = Gf.

• Upon termination of  = 1 phase, there are no augmenting
paths. ▪

17

Capacity Scaling: Running Time
Lemma 1. The outer while loop repeats 1 + log2 C times.
Pf. Initially C   < 2C.  decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the
value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.
• Let f be the flow at the end of the previous scaling phase.
• L2  v(f*)  v(f) + m (2).
• Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m
log C) augmentations. It can be implemented to run in O(m2 log C)
time. ▪

proof on next slide

18

10/23/2017

10

Capacity Scaling: Running Time
Lemma 2. Let f be the flow at the end of a -scaling phase. Then value of the
maximum flow is at most v(f) + m .

Pf. (almost identical to proof of max-flow min-cut theorem)

• We show that at the end of a -phase, there exists a cut (A, B) such that
cap(A, B)  v(f) + m .

• Choose A to be the set of nodes reachable from s in Gf().

• By definition of A, s  A.

• By definition of f, t  A.



v(f)  f (e)
e out of A

  f (e)
e in to A



 (c(e)
e out of A

 )  
e in to A



 c(e)
e out of A

  
e out of A

  
e in to A



 cap(A, B) - m

original network

s

t

A B

19

Edmonds-Karp Algorithm

• Neither of the algorithms we have seen so far runs in
“truly” polynomial time

• Edmonds and Karp developed the first polynomial-time
algorithm for flow networks.
– Uses Ford-Fulkerson as basis
– Modification: when finding the augmenting path, we

compute the s-t path in the residual network having the
smallest number of edges
• Note that this can be accomplished by using BFS to compute the

augmenting path

– It can be shown that the total number of augmenting steps
using this method is O(nm) (Proof in CLRS)

– Overall runtime = O(nm2)

20

10/23/2017

11

Other Algorithms

• KT discusses pre-flow push algorithm

– Number of variants of this algorithm

– Simplest version runs in O(n3) time

• Another quite sophisticated algorithm runs in time
O(min(n2/3,m1/2)m log n log U), where U is an upper bound on
the largest capacity.

21

Practice
Professor Adam has two children, who unfortunately,
dislike each other. The problem is so severe that not
only do they refuse to walk to school together, but in
fact each one refuses to walk on any block that the
other child has stepped on that day. The children have
no problem with their paths crossing at a corner.
Fortunately, both the professor’s house and the school
are on corners, but beyond that he is not sure if it is
going to be possible to send both of his children to the
same school. The professor has a map of the town.
Show how to formulate the problem of determining
whether both his children can go to the same school as
a maximum-flow problem.

22

