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COMP 355
Advanced Algorithms

Extensions of Network Flows
Section 7.7- 7.12(KT)
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Applications of Max-Flow

Huge number of applications

• Bipartite Matching

• Perfect Matching

• Disjoint Paths
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Matching.

• Input:  undirected graph G = (V, E).

• M  E is a matching if each node appears in at most one edge in M.

• Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching
Bipartite matching.

• Input:  undirected, bipartite graph G = (X  Y, E).

• M  E is a matching if each node appears in at most one edge in M.

• Max matching:  find a max cardinality matching.
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Bipartite Matching
Bipartite matching.

• Input:  undirected, bipartite graph G = (X  Y, E).

• M  E is a matching if each node appears in at most edge in M.

• Max matching:  find a max cardinality matching.
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Max flow formulation.

• Create digraph G' = (X  Y {s, t},  E' ).

• Direct all edges from X to Y, and assign unit (or infinite) capacity.

• Add source s, and unit capacity edges from s to each node in X.

• Add sink t, and unit capacity edges from each node in Y to t.

Bipartite Matching
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, find 
the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, find 
the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Pf.   

– Suppose there are k edge-disjoint paths P1, . . . , Pk.

– Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0.

– Since paths are edge-disjoint, f is a flow of value k.   ▪

Edge Disjoint Paths
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Pf.   

– Suppose max flow value is k.

– Integrality theorem   there exists 0-1 flow f of value k.

– Consider edge (s, u) with f(s, u) = 1.

• by conservation, there exists an edge (u, v) with f(u, v) = 1

• continue until reach t, always choosing a new edge

– Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge Disjoint Paths
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Extensions of Network Flow

Network flow - useful in a wide variety of applications

We will discuss two useful extensions to the network flow 
problem.

– Both can be reduced to network flow

– Single algorithm will solve them both.

Many computational problems that would seem to have little to 
do with flow of fluids through networks can be expressed as one 
of these two extended versions.

11

Circulation with Demands
Circulation with demands.

– Directed graph G = (V, E).
– Edge capacities c(e), e  E.
– Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:
– For each e  E: 0    f(e)    c(e) (capacity)
– For each v  V: (conservation)

Circulation problem:  Given (V, E, c, d), does there exist a circulation?

  



f (e)
e in to v

  f (e)
e out of v

  d(v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0
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Necessary condition:  sum of supplies = sum of demands.

Pf.  Sum conservation constraints for every demand node v.
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capacity

  



d(v)
v : d (v)  0

   d(v)
v : d (v)  0

 : D
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Circulation with Demands

Max flow formulation.

G:
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Circulation with Demands
Max flow formulation.

• Add new source s and sink t.

• For each v with d(v) < 0, add edge (s, v) with capacity -d(v).

• For each v with d(v) > 0, add edge (v, t) with capacity  d(v).

• Claim:  G has circulation iff G' has max flow of value D.
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Circulation with Demands
Integrality theorem.  If all capacities and demands are integers, and there 
exists a circulation, then there exists one that is integer-valued.

Pf.  Follows from max flow formulation and integrality theorem for max flow.

Characterization.  Given (V, E, c, d), there does not exists a circulation iff there 
exists a node partition (A, B) such that vB dv > cap(A, B)

Pf idea.  Look at min cut in G'. demand by nodes in B exceeds supply

of nodes in B plus max capacity of

edges going from A to B
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Circulation with Demands and Lower 
Bounds

Feasible circulation.

– Directed graph G = (V, E).  

– Edge capacities c(e) and lower bounds  (e), e  E.

– Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:

– For each e  E:  (e)  f(e)    c(e) (capacity)

– For each v  V: (conservation)

Circulation problem with lower bounds.  Given (V, E, , c, d), does there exists 
a circulation?

  



f (e)
e in to v

  f (e)
e out of v

  d(v)
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Circulation with Demands and Lower 
Bounds

Idea.  Model lower bounds with demands.

• Send (e) units of flow along edge e.

• Update demands of both endpoints.

Theorem.  There exists a circulation in G iff there exists a circulation in G'. If all 
demands, capacities, and lower bounds in G are integers, then there is a circulation in 
G that is integer-valued.

Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) is a circulation in G'.

v w[2, 9]

lower bound upper bound

v w

d(v) d(w) d(v) + 2 d(w) - 2
G G'
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Survey Design

Survey design.

• Design survey asking n1 consumers about n2 products.

• Can only survey consumer i about a product j if they own it.

• Ask consumer i between ci and ci' questions.

• Ask between pj and pj' consumers about product j.

Goal.  Design a survey that meets these specs, if possible.

19

Survey Design
Algorithm.  Formulate as a circulation problem with lower bounds.

• Include an edge (i, j) if customer own product i.

• Integer circulation   feasible survey design.
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Practice (Chapter 7 (KT), Exercise 7)

25

Consider a set of mobile computing clients in a certain town who each 
need to be connected to one of several possible base stations. We’ll 
suppose there are n clients, with the position of each client specified 
by its (x, y) coordinates in the plane. There are also k base stations; the 
position of each of these is specified by (x, y) coordinates as well. 
For each client, we wish to connect it to exactly one of the base 
stations. Our choice of connections is constrained in the following 
ways.
- Range parameter – r – a client can only be connected to a base 

station that is within distance r.
- Load parameter – L – no more than L clients can be connected to 

any single base station.
Design a polynomial-time algorithm to determine whether every client 
can be connected simultaneously to a base station, subject to the 
range and load conditions above.


