

You can't be serious!

Arguments against using polynomial-time as the definition of efficiency

- When n is small, run time of 2ⁿ much faster than O(n²⁰)
- Many problems for which good average case solutions exist, but the worst case complexity may be very bad
- On modern architectures, practical efficiency is a function of many issues that have to do with the machine's internal architecture

Mathematical advantages of defining "efficiently solvable" to be "worstcase polynomial time solvable"

- The composition of two polynomials is a polynomial
 - Example: an algorithm that makes $O(n^2)$ calls to a function that takes $O(n^3)$ time runs in $O(n^5)$ time, which is still polynomial.
- No need to worry about the distribution of inputs

When n is sufficiently large, exponential time algorithms (2^n time) are not efficient

The Emergence of Hard Problems

"hard" problem = no known efficient algorithmic solutions exist for these problems.

Complexity Class	Examples
	Minimum Spanning Trees, Shortest Paths,
Polynomial Time	Chain Matrix Multiplication, LCS,
	Stable Marriage, Maximum Matching
	Network Flows, Minimum Cut
	Vertex Cover, Hamiltonian Cycle
Equivalent	Boolean Satisfiability, Set Cover, Clique Cover
(Believed Hard)	Clique, Independent Set, Graph Coloring
	Hitting Set, Feedback Vertex Set

Reasonable Input Encodings

- Must define terms precisely
- Treat the input to our problems as a string over some alphabet that has a constant number, but at least two, characters (e.g., a binary bit string or a Unicode encoding).
- All the representations we have seen this semester (e.g., sets as lists, graphs as adjacency lists or adjacency matrices, etc.) are considered to be reasonable.
- To determine whether some new representation is reasonable:
 - It should be as concise as possible (in the worst case)
 - It should be possible to convert from an existing reasonable representation to this new form in polynomial time.

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: A(s) = yes iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where $p(\cdot)$ is some polynomial.

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, } Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|⁸.

6

5

Decision Problem Example The MST decision problem might be: • Given a weighted graph G and an integer k, does G have a spanning tree whose weight is at most k? Formulating as a language recognition problem. Define a language MST encoding the minimum spanning tree ٠ problem as: $MST = \{(G, k) \mid G \text{ has a minimum spanning tree of weight at most } k\}$. What does it mean to solve the decision problem? When presented with a specific input string x = serialize(G, k), the algorithm would answer "yes" if $x \in MST$ (G has a spanning tree of weight at most k) and "no" otherwise. • If "yes", algorithm accepts the input and otherwise it rejects the input. Decision problems are equivalent to language membership • problems.

The Class P					
finition: P i which mei lynomial tii	s the set of all langu nbership can be det ne.	ages (i.e., de ermined in (cision pi worst ca	roblems ise)	
Problem	Description	Algorithm	Yes	No	
MULTIPL	E Is x a multiple of y?	Grade school division	51, 17	51, 16	
RELPRIM	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51	
PRIMES	Is x prime?	AKS (2002)	53	51	
CNTT	Is the edit distance	Dynamic	niether	acgggt	
DISTANC	E than 5?	programming	neither	tttta	

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

13

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

- EXP. Decision problems for which there is an exponential-time algorithm.
- NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

- Pf. Consider any problem X in P.
- By definition, there exists a poly-time algorithm A(s) that solves X.
- Certificate: t = ε, certifier C(s, t) = A(s).

Claim. NP \subseteq EXP.

- Pf. Consider any problem X in NP.
- By definition, there exists a poly-time certifier C(s, t) for X.
- To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- Return yes, if C(s, t) returns yes for any of these.

15

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

<section-header><section-header><section-header><image><image>

Looking for a Job?

Some writers for the Simpsons and Futurama.

- J. Steward Burns. M.S. in mathematics, Berkeley, 1993.
- David X. Cohen. M.S. in computer science, Berkeley, 1992.
- Al Jean. B.S. in mathematics, Harvard, 1981.
- Ken Keeler. Ph.D. in applied mathematics, Harvard, 1990.
- Jeff Westbrook. Ph.D. in computer science, Princeton, 1989.

17