
11/6/2017

1

COMP 355
Advanced Algorithms

NP-Completeness: Reductions
Chapter 8 (KT)

1

Recap

2

11/6/2017

2

Algorithm Design Patterns and
Anti-Patterns

Algorithm design patterns. Ex.
• Greed. O(n log n) interval scheduling.
• Divide-and-conquer. O(n log n) FFT.
• Dynamic programming. O(n2) edit distance.
• Duality. O(n3) bipartite matching.
• Reductions.
• Local search.
• Randomization.

Algorithm design anti-patterns.
• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness. O(nk) certification algorithm unlikely.
• Undecidability. No algorithm possible.

3

Classify Problems According to
Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin
1966] Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

4

11/6/2017

3

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X  P Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X  P Y and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

Establish equivalence. If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction

5

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could
we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances
of problem X can be solved using:
• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y.

Notation. X  P Y.

Remarks.
• We pay for time to write down instances sent to black box  instances of

Y must be of polynomial size.
• Note: Cook reducibility.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

in contrast to Karp reductions

6

11/6/2017

4

Reductions
Suppose that there are two problems, H and U.

If we know that H is hard (cannot be solved in polynomial time), can we prove
that U is also hard?

We effectively want to show that:
• (H !∈ P) ⇒ (U !∈ P).

To do this, we could prove the contrapositive,
• (U ∈ P) ⇒ (H ∈ P).

To show that U is not solvable in polynomial time, we will suppose (towards a
contradiction) that a polynomial time algorithm for U did exist, and then we
will use this algorithm to solve H in polynomial time, thus yielding a
contradiction.

7

Reductions
• Suppose we have a subroutine that can solve any instance of problem U in

polynomial time.

• Given an input x for the problem H, translate it into an equivalent input x′ for U.
(where x ∈ H if and only if x′ ∈ U)

• Run subroutine on x′ and output whatever it outputs. If U is solvable in
polynomial time, then so is H.

• We assume that the translation module runs in polynomial time. If so, we say we
have a polynomial reduction of problem H to problem U, which is denoted H ≤P U
(Karp reduction)

Reducing H to U
8

11/6/2017

5

3-Colorability and Clique Cover
3-coloring (3Col): Given a graph G, can each of its vertices be labeled with
one of three different “colors”, such that no two adjacent vertices have the
same label (see (a) and (b)).

Clique Cover (CCov): Given a graph G = (V,E) and an integer k, can we
partition the vertex set into k subsets of vertices V1, . . . , Vk such that each Vi

is a clique of G

9

3-Colorability and Clique Cover

Reducing 3Col to CliqueCov

10

11/6/2017

6

Proof of 3Col -> Clique Cover
Claim: A graph G = (V,E) is 3-colorable if and only if its complement G =
(V,E) has a clique-cover of size 3. In other words, G ∈ 3Col ⇐⇒ (G, 3) ∈
CCov.

Proof:
(⇒) If G 3-colorable, then let V1, V2, V3 be the three color classes. We
claim that this is a clique cover of size 3 for G, since if u and v are
distinct vertices in Vi, then {u, v} /∈ E (since adjacent vertices cannot
have the same color) which implies that {u, v} ∈ E. Thus every pair of
distinct vertices in Vi are adjacent in G.

(⇐) Suppose G has a clique cover of size 3, denoted V1, V2, V3. For i ∈
{1, 2, 3} give the vertices of Vi color i. We assert that this is a legal
coloring for G, since if distinct vertices u and v are both in Vi, then {u,
v} ∈ E (since they are in a common clique), implying that {u, v} /∈ E.
Hence, two vertices with the same color are not adjacent.

11

Polynomial-time reduction

Definition: We say that a language (i.e. decision problem) L1 is
polynomial-time reducible to language L2 (written L1 ≤P L2) if
there is a polynomial time computable function f, such that for
all x, x ∈ L1 if and only if f(x) ∈ L2.

Lemma: If L1 ≤P L2 and L2 ∈ P then L1 ∈ P.

Lemma: If L1 ≤P L2 and L1 !∈ P then L2 !∈ P.

Because the composition of two polynomials is a polynomial, we
can chain reductions together.

Lemma: If L1 ≤P L2 and L2 ≤P L3 then L1 ≤P L3.

12

11/6/2017

7

NP-completeness

Definition: A language L is NP-hard if L′ ≤P L, for all L′ ∈ NP. (Note
that L does not need to be in NP.)

Definition: A language L is NP-complete if:

1. L ∈ NP (that is, it can be verified in polynomial time), and

2. L is NP-hard (that is, every problem in NP is polynomially
reducible to it).

Lemma: L is NP-complete if

1. L ∈ NP and

2. L′ ≤ P L for some known NP-complete language L′.

13

Structure of NPC and reductions

14

