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Decision Problems/Language recognition: are problems for which the answer is either
yes or no. These can also be thought of as language recognition problems, assuming that
the input has been encoded as a string. For example:

HC
MST

{G | G has a Hamiltonian cyele}
{(G.¢) | G has a MST of cost at most c}.

P: is the class of all decision problems which can be solved in polvnomial time. While
MST £ P, we do not know whether HC € P (but we suspect not).

Cortificate: is a piece of evidence that allows us to verify in polynomial time that a string
is in a given language. For example, the language HC above, a certificate could be a
sequence of vertices along the cycle. (If the string is not in the language, the certificate
can be anything. )

NP: is defined to be the class of all languages that can be wverified in polynomial time.
(Formally, it stands for Nondeterministic Polynomial time.) Clearly, P C NP. It is
widely believed that P 3 NP.
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Algorithm Design Patterns and
Anti-Patterns

Algorithm design patterns. Ex.

* Greed. O(n log n) interval scheduling.
* Divide-and-conquer. O(n log n) FFT.

* Dynamic programming. 0(n?) edit distance.

e Duality. 0O(n3) bipartite matching.

* Reductions.
* Local search.
* Randomization.

Algorithm design anti-patterns.

* NP-completeness. O(nk) algorithm unlikely.
* PSPACE-completeness. 0O(nk) certification algorithm unlikely.
* Undecidability. No algorithm possible.

Classify Problems According to
Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin
1966] Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path
Matching 3D-matching
Min cut Max cut
2-SAT 3-SAT
Planar 4-color Planar 3-color
Bipartite vertex cover Vertex cover
Primality testing Factoring
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Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X<, Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial-
time, then Y cannot be solved in polynomial time.

Establish equi\T/aIence. IfX<p,YandY <, X, we use notation X =, Y.

up to cost of reduction

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could

R X X >
we solve in ponnomlaI time: don't confuse with reduces from

/
Reduction. Problem X polynomial reduces to problem Y if arbitrary instances
of problem X can be solved using:
* Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Notation. X<, Y. computational model supplemented by special piece
P of hardware that solves instances of Y in a single step

Remarks.

* We pay for time to write down instances sent to black box = instances of
Y must be of polynomial size.

* Note: Cook reducibility.

™ in contrast to Karp reductions
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Reductions

Suppose that there are two problems, H and U.

If we know that H is hard (cannot be solved in polynomial time), can we prove
that U is also hard?

We effectively want to show that:
* (H!eP)=(U!leP).

To do this, we could prove the contrapositive,
e (UEP)=(HEP).

To show that U is not solvable in polynomial time, we will suppose (towards a
contradiction) that a polynomial time algorithm for U did exist, and then we
will use this algorithm to solve H in polynomial time, thus yielding a

contradiction.
”
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Reductions

Suppose we have a subroutine that can solve any instance of problem U in
polynomial time.

Given an input x for the problem H, translate it into an equivalent input x’ for U.
(where x e Hif and only if X' €U )

Run subroutine on x’ and output whatever it outputs. If U is solvable in
polynomial time, then so is H.

We assume that the translation module runs in polynomial time. If so, we say we
have a polynomial reduction of problem H to problem U, which is denoted H <, U
(Karp reduction)

subroutine for H

yes
subroutine for [

no

o
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Reducing Hto U
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3-Colorability and Clique Cover

3-coloring (3Col): Given a graph G, can each of its vertices be labeled with
one of three different “colors”, such that no two adjacent vertices have the
same label (see (a) and (b)).

J-colorable not -colorable Clique cover (k= 3)

Clique Cover (CCov): Given a graph G = (V,E) and an integer k, can we
partition the vertex set into k subsets of vertices V,, . .., V, such that each V,
is a clique of G

3-Colorability and Clique Cover

subroutine for 3-Col

(a) (b)
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Proof of 3Col -> Clique Cover

Claim: A graph G = (V,E) is 3-colorable if and only if its complement G =
(V,E) has a clique-cover of size 3. In other words, G € 3Col &= (G, 3) €
CCov.

Proof:

(=) If G 3-colorable, then let V,, V,, V; be the three color classes. We
claim that this is a clique cover of size 3 for G, since if u and v are
distinct vertices in V, then {u, v} /€ E (since adjacent vertices cannot
have the same color) which implies that {u, v} € E. Thus every pair of
distinct vertices in V,are adjacent in G.

(<) Suppose G has a clique cover of size 3, denoted V,, V,, V,. Fori €
{1, 2, 3} give the vertices of Vi color i. We assert that this is a legal
coloring for G, since if distinct vertices u and v are both in V, then {u,
v} € E (since they are in a common clique), implying that {u, v} /€ E.
Hence, two vertices with the same color are not adjacent.

11

Polynomial-time reduction

Definition: We say that a language (i.e. decision problem) L, is
polynomial-time reducible to language L, (written L, < L,) if
there is a polynomial time computable function f, such that for
all x, x € L, if and only if f(x) € L,.

Lemma: IfL; <, L,and L, EP thenL, EP.
Lemma: If L; <, L,and Ly lE P then L, lEP.

Because the composition of two polynomials is a polynomial, we
can chain reductions together.

Lemma: If L; <o Ly and L, <p Ly then L < Ls.
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NP-completeness

Definition: A language L is NP-hard if L' <, L, for all L' € NP. (Note
that L does not need to be in NP.)

Definition: A language L is NP-complete if:
1. LE NP (thatis, it can be verified in polynomial time), and

2. Lis NP-hard (that is, every problem in NP is polynomially
reducible to it).

Lemma: L is NP-complete if
1. LENPand
2. L'<, Lfor some known NP-complete language L'.

’?
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Structure of NPC and reductions

All problems in NP If SAT <p X IfY & NP and SAT <p Y
are reducible to SAT then X is '\P hard then ¥ is NP- c-cJ'n':lvlc'
/ \P hard \Iqur iplete
’ ‘a\l SAT
NP\
|
\/ "4‘\| \/ " \/ "ﬁ'\l

(a) (b) (B)
5 Q
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