COMP 355 Advanced Algorithms

Cook's Theorem, 3SAT, and Independent Set Chapter 8 (KT) Section 34.4-34.5(CLRS)

Recap

Polynomial reduction: $L_1 \leq_p L_2$ means that there is a polynomial time computable function f such that $x \in L_1$ if and only if $f(x) \in L_2$. A more intuitive way to think about this is that if we had a subroutine to solve L_2 in polynomial time, then we could use it to solve L_1 in polynomial time. Polynomial reductions are transitive, that is, $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ implies $L_1 \leq_p L_3$.

NP-Hard: L is NP-hard if for all $L' \in NP$, $L' \leq_p L$. By transitivity of \leq_p , we can say that L is NP-hard if $L' \leq_p L$ for some known NP-hard problem L'.

NP-Complete: L is NP-complete if (1) $L \in NP$ and (2) L is NP-hard.

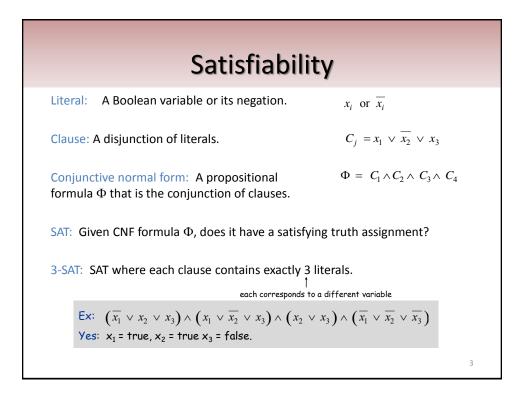
It follows from these definitions that:

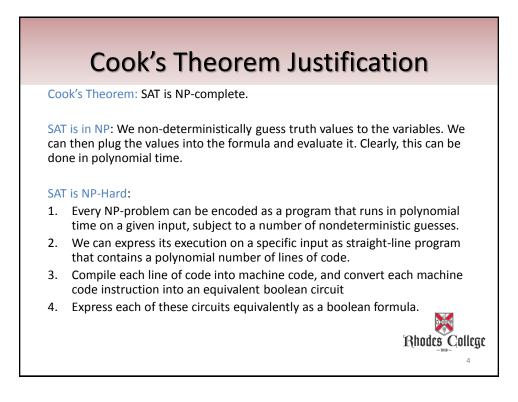
• If any NP-hard problems is solvable in polynomial time, then every NP-complete problem (in fact, every problem in NP) is also solvable in polynomial time.

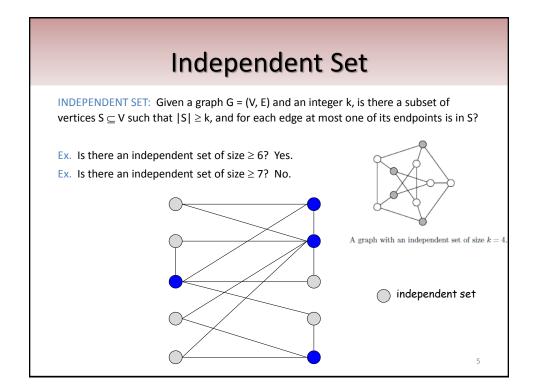
• If any NP-complete problem cannot be solved in polynomial time, then every NP-complete problem (in fact, every NP-hard problem) cannot be solved in polynomial time.

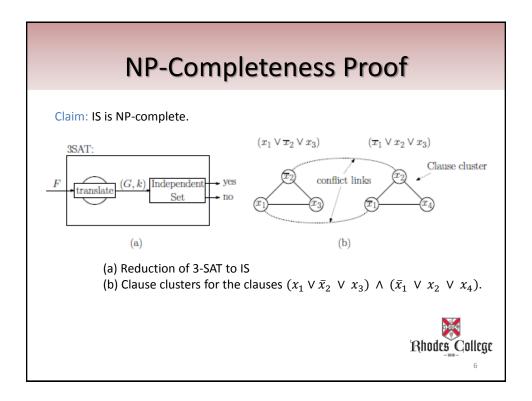
Thus all NP-complete problems are equivalent to one another (in that they are either all solvable in polynomial time, or none are).

2









3 Satisfiability Reduces to Independent Set

Claim. $3-SAT \leq_{P} INDEPENDENT-SET.$

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

