
8/28/2017

1

COMP 355
Advanced Algorithms

COMP 355: Advanced Algorithms 1

Algorithm Design Review:
Mathematical Background

Stable Marriage

COMP 355: Advanced Algorithms 2

E A
F B
G C

8/28/2017

2

Polynomial Running Time

COMP 355: Advanced Algorithms 3

 Brute force. For many non-trivial problems, there is a natural
brute force search algorithm that checks every possible
solution.
–Typically takes 2N time or worse for inputs of size N.
–Unacceptable in practice.

 Desirable scaling property. When the input size doubles, the
algorithm should only slow down by some constant factor c.

 Def. An algorithm is poly-time if the above scaling property
holds.

There exists constants c > 0 and d > 0 such that on every

input of size n, its running time is bounded by c nd steps.

n ! for stable matching
with n men and n women

Worst-Case Analysis

COMP 355: Advanced Algorithms 4

 Worst case running time. Obtain bound on largest
possible running time of algorithm on input of a given
size N.
–Generally captures efficiency in practice.
–Draconian view, but hard to find effective alternative.

 Average case running time. Obtain bound on running
time of algorithm on random input as a function of input
size N.
–Hard (or impossible) to accurately model real instances

by random distributions.
–Algorithm tuned for a certain distribution may perform

poorly on other inputs.

8/28/2017

3

Worst-Case Polynomial Time

COMP 355: Advanced Algorithms 5

An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
– Although 6.02 1023 N20 is technically poly-time, it would be

useless in practice.
– In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.
– Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

Exceptions.
– Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice.
– Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare.

Big-O Notation

COMP 355: Advanced Algorithms 6

• Asymptotic O-notation (“big-O”) provides a way
to simplify the messy functions that often arise in
analyzing the running times of algorithms

• Allows us to ignore less important elements
(constants)

• Focus on important issues (growth rate for large
values of n)

8/28/2017

4

Formal Definition Big-O

COMP 355: Advanced Algorithms 7

• Formally, f(n) is O(g(n)) if there exist constants c >
0 and n0 ≥ 0 such that, f(n) ≤ c · g(n), for all n ≥ n0.

• Thus, big-O notation can be thought of as a way
of expressing a sort of fuzzy “≤” relation between
functions, where by fuzzy, we mean that constant
factors are ignored and we are only interested in
what happens as n tends to infinity.

Intuitive Form of Big-O

COMP 355: Advanced Algorithms 8

𝑓 𝑛 𝑖𝑠 𝑂 𝑔 𝑛 𝑖𝑓 lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≥ 𝑐, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 ≥ 0.

For example, if f(n) = 15n2 + 7n log3 n and g(n) = n2, we have f(n) is O(g(n))
because

In the last step of the derivation, we have used the important fact that log n
raised to any positive power grows asymptotically more slowly than n raised to
any positive power.

8/28/2017

5

Useful facts about limits

COMP 355: Advanced Algorithms 9

10

Survey of Common Running Times

• Linear Time: O(n)

• Linearithmic Time: O(n log n)

• Quadratic Time: O(n2)

• Cubic Time: O(n3)

• Polynomial Time: O(nk)

• Exponential Time: O(2𝑛
𝑘
)

COMP 355: Advanced Algorithms

8/28/2017

6

Comparison of Running Times

COMP 355: Advanced Algorithms 18

Other Asymptotic Forms

COMP 355: Advanced Algorithms 19

• Big-O has a number of relatives, which are
useful for expressing other sorts of relations.

• More on these next time!

8/28/2017

7

Summations

COMP 355: Advanced Algorithms 20

• Naturally arise in analysis of iterative algorithms

• More complex forms of analysis, such as
recurrences, are often solved by reducing to
summations

• Solving a summation means reducing it to a
closed-form formula
– No summations, recurrences, integrals, or other

complex operators

• Often don’t need to solve a summation exactly to
find the asymptotic approximation

Summations With General Bounds

COMP 355: Advanced Algorithms 27

8/28/2017

8

COMP 355: Advanced Algorithms 28

Linearity of Summation

Apply the formulas to each summation individually.

COMP 355: Advanced Algorithms 29

Approximate Using Integrals

8/28/2017

9

30

Example: Previous Larger Element
Given a sequence of numeric values, <a1, a2, . . . , an>. For each element ai, for 1 ≤ i ≤ n, we
want to know the index of the rightmost element of the sequence <a1, a2, . . . , ai−1> whose
value is strictly larger than ai. If no element of this subsequence is larger than ai then, by
convention, the index will be 0. (Or, if you like, you may imagine that there is a fictitious
sentinel value a0 = ∞.) More formally, for 1 ≤ i ≤ n, define pi to be
pi = max{j | 0 ≤ j < i and aj > ai}, where a0 = ∞ (see Fig. 2).

COMP 355: Advanced Algorithms 31

Naive Algorithm For Previous
Larger Element

8/28/2017

10

COMP 355: Advanced Algorithms 32

Recurrences

Arise naturally in analysis of divide-and-conquer
algorithms

• Divide: Divide the problem into two or more
sub-problems (ideally of roughly equal sizes)

• Conquer: Solve each sub-problem recursively

• Combine: Combine the solutions to the sub-
problems into a single global solution.

COMP 355: Advanced Algorithms 33

Recurrences

• To analyze recursive procedures such as divide-
and-conquer, we need to set up a recurrence.

• Example: Suppose we break a problem into two
sub-problems, each of size roughly n/2.

• Additional overhead of splitting and merging the
solutions is O(n).

• When sub-problems are reduced to size 1, we can
solve them in O(1) time.

• Ignoring constants and writing O(n) as n, we get:
T(n) = 1 if n = 1,
T(n) = 2T(n/2) + n if n > 1

8/28/2017

11

COMP 355: Advanced Algorithms 34

Example Problem

• Use mathematical induction to show that
when n is an exact power of 2, the solution of
the recurrence

𝑇 𝑛 =
2, 𝑖𝑓 𝑛 = 2,

2𝑇
𝑛

2
+ 𝑛, 𝑖𝑓 𝑛 = 2𝑘 , 𝑓𝑜𝑟 𝑘 > 1

is 𝑇 𝑛 = 𝑛 lg 𝑛

Next Time

• Other Asymptotic Forms

• Read Section 2.2

COMP 355: Advanced Algorithms 35

