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Algorithm Design Review: 
Mathematical Background
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Polynomial Running Time
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 Brute force.  For many non-trivial problems, there is a natural 
brute force search algorithm that checks every possible 
solution.
–Typically takes 2N time or worse for inputs of size N.
–Unacceptable in practice.

 Desirable scaling property.  When the input size doubles, the 
algorithm should only slow down by some constant factor c. 

 Def.  An algorithm is poly-time if the above scaling property 
holds.

There exists constants c > 0 and d > 0 such that on every 

input of size n, its running time is bounded by c nd steps.

n ! for stable matching
with n men and n women

Worst-Case Analysis
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 Worst case running time.  Obtain bound on largest 
possible running time of algorithm on input of a given 
size N.
–Generally captures efficiency in practice.
–Draconian view, but hard to find effective alternative. 

 Average case running time.  Obtain bound on running 
time of algorithm on random input as a function of input 
size N.
–Hard (or impossible) to accurately model real instances 

by random distributions.
–Algorithm tuned for a certain distribution may perform 

poorly on other inputs.
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Worst-Case Polynomial Time
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An algorithm is efficient if its running time is polynomial.

Justification:  It really works in practice!
– Although 6.02  1023  N20 is technically poly-time, it would be 

useless in practice.
– In practice, the poly-time algorithms that people develop almost 

always have low constants and low exponents.
– Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem.

Exceptions.
– Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice.
– Some exponential-time (or worse) algorithms are widely used 

because the worst-case instances seem to be rare.

Big-O Notation
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• Asymptotic O-notation (“big-O”) provides a way 
to simplify the messy functions that often arise in 
analyzing the running times of algorithms

• Allows us to ignore less important elements 
(constants)

• Focus on important issues (growth rate for large 
values of n)
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Formal Definition Big-O
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• Formally, f(n) is O(g(n)) if there exist constants c > 
0 and n0 ≥ 0 such that, f(n) ≤ c · g(n), for all n ≥ n0.

• Thus, big-O notation can be thought of as a way 
of expressing a sort of fuzzy “≤” relation between 
functions, where by fuzzy, we mean that constant 
factors are ignored and we are only interested in 
what happens as n tends to infinity.

Intuitive Form of Big-O
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𝑓 𝑛 𝑖𝑠 𝑂 𝑔 𝑛 𝑖𝑓 lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≥ 𝑐, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 ≥ 0.

For example, if f(n) = 15n2 + 7n log3 n and g(n) = n2, we have f(n) is O(g(n)) 
because

In the last step of the derivation, we have used the important fact that log n 
raised to any positive power grows asymptotically more slowly than n raised to 
any positive power.
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Useful facts about limits
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Survey of Common Running Times

• Linear Time: O(n)

• Linearithmic Time: O(n log n)

• Quadratic Time: O(n2)

• Cubic Time: O(n3)

• Polynomial Time:  O(nk)

• Exponential Time: O(2𝑛
𝑘
)

COMP 355: Advanced Algorithms



8/28/2017

6

Comparison of Running Times
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Other Asymptotic Forms
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• Big-O has a number of relatives, which are 
useful for expressing other sorts of relations.

• More on these next time!
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Summations
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• Naturally arise in analysis of iterative algorithms

• More complex forms of analysis, such as 
recurrences, are often solved by reducing to 
summations

• Solving a summation means reducing it to a 
closed-form formula
– No summations, recurrences, integrals, or other 

complex operators

• Often don’t need to solve a summation exactly to 
find the asymptotic approximation

Summations With General Bounds
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Linearity of Summation

Apply the formulas to each summation individually.
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Approximate Using Integrals
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Example: Previous Larger Element
Given a sequence of numeric values, <a1, a2, . . . , an>. For each element ai, for 1 ≤ i ≤ n, we 
want to know the index of the rightmost element of the sequence <a1, a2, . . . , ai−1> whose 
value is strictly larger than ai. If no element of this subsequence is larger than ai then, by 
convention, the index will be 0. (Or, if you like, you may imagine that there is a fictitious 
sentinel value a0 = ∞.) More formally, for 1 ≤ i ≤ n, define pi to be 
pi = max{j | 0 ≤ j < i and aj > ai}, where a0 = ∞ (see Fig. 2).
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Naive Algorithm For Previous 
Larger Element
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Recurrences

Arise naturally in analysis of divide-and-conquer 
algorithms

• Divide: Divide the problem into two or more 
sub-problems (ideally of roughly equal sizes)

• Conquer: Solve each sub-problem recursively

• Combine: Combine the solutions to the sub-
problems into a single global solution.
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Recurrences

• To analyze recursive procedures such as divide-
and-conquer, we need to set up a recurrence.

• Example: Suppose we break a problem into two 
sub-problems, each of size roughly n/2.

• Additional overhead of splitting and merging the 
solutions is O(n).

• When sub-problems are reduced to size 1, we can 
solve them in O(1) time.

• Ignoring constants and writing O(n) as n, we get:
T(n) = 1 if n = 1,
T(n) = 2T(n/2) + n if n > 1
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Example Problem

• Use mathematical induction to show that 
when n is an exact power of 2, the solution of 
the recurrence

𝑇 𝑛 =  
2, 𝑖𝑓 𝑛 = 2,

2𝑇
𝑛

2
+ 𝑛, 𝑖𝑓 𝑛 = 2𝑘 , 𝑓𝑜𝑟 𝑘 > 1

is 𝑇 𝑛 = 𝑛 lg 𝑛

Next Time

• Other Asymptotic Forms

• Read Section 2.2
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