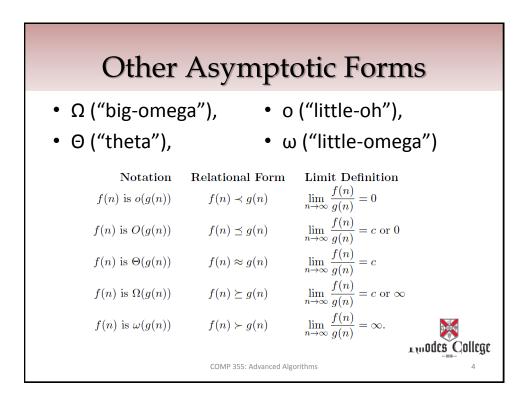


Large Input Sizes				
n	$T_1(n)$	$T_2(n)$	$T_1(n)/T_2(n)$	
10	0.001 sec	0.001 sec	1	
100	1 sec	0.01 sec	100	
1000	17 min	0.1 sec	10,000	
10,000	11.6 days	1 sec	1,000,000	
		$\Gamma_1(n) = n^3$ (n) = 100n		
	s grow, the per thm degrades :		ne asymptotically pidly.	

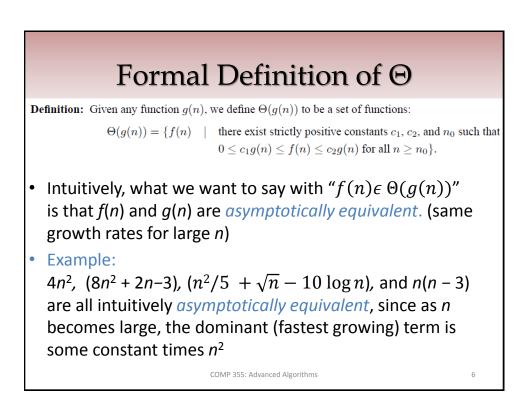


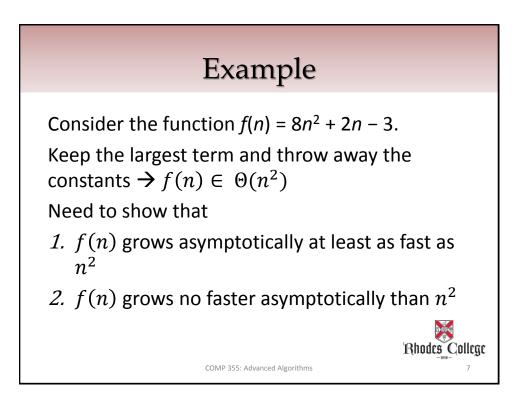
- Asymptotic notation represents a function by its fastest growing term and ignores constant factors
- Example: $T(n) = 13n^3 + 5n^2 17n + 16$
 - As n becomes large, the 13n³ term dominates the others.

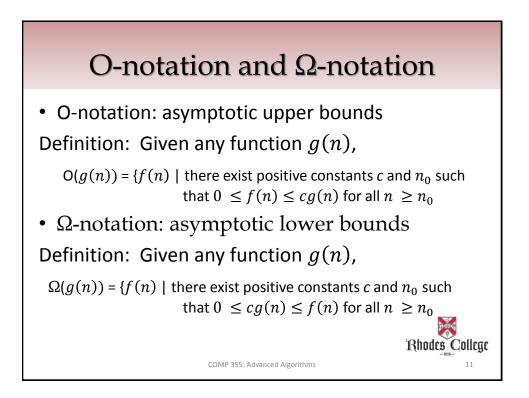
COMP 355: Advanced Algorithms

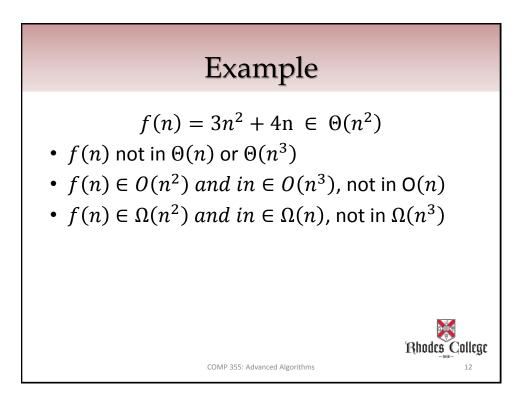
Rhodes College

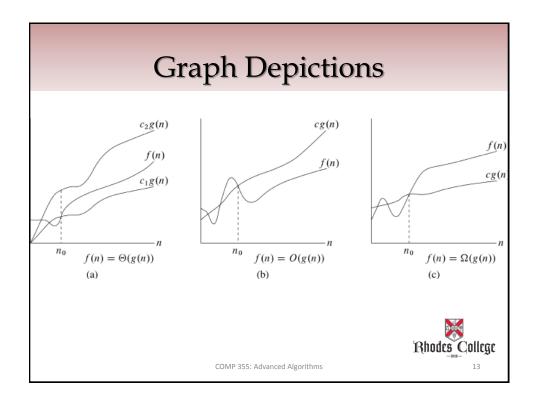
- Running Time grows "on the order of" n³.
- $-T(n) \in \Theta(n^3)$

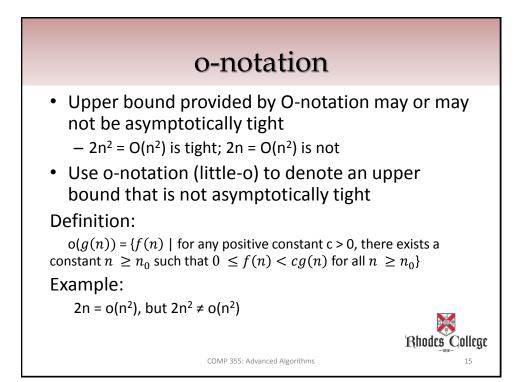


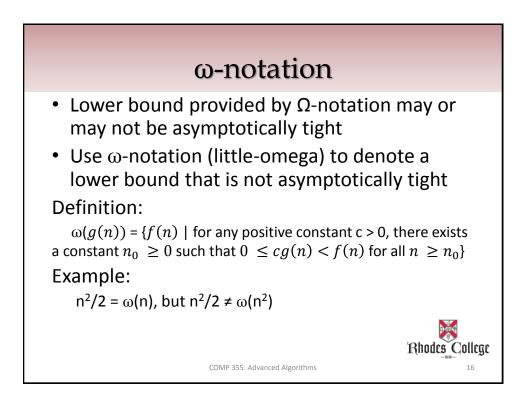


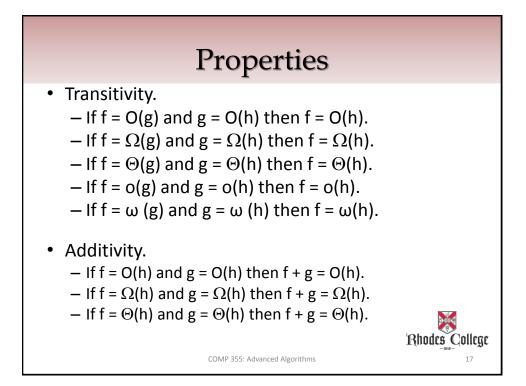


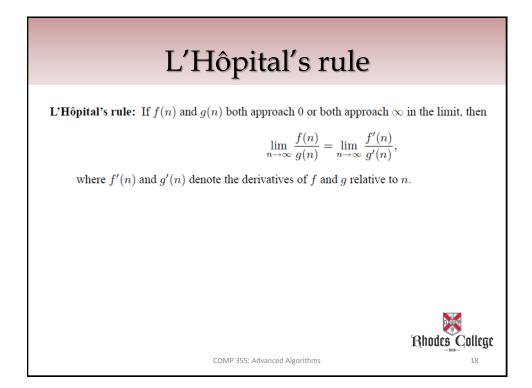












Exponentials and Logarithms

The terminology $\lg^b n$ means $(\lg n)^b$

Lemma: Given any positive constants a > 1, b, and c:

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \qquad \qquad \lim_{n \to \infty} \frac{\lg^b n}{n^c} = 0.$$

Rhodes College

20

• Polynomials always grow more slowly than exponentials

$$n^{500} \in O(2^n)$$

• Logarithmic powers grow more slowly than any polynomial

$$\lg^{500} n \in O(n)$$

COMP 355: Advanced Algorithms

PracticeWork in groups:In each case, put the two functions in increasing order of
asymptotic growth rate. That is, indicate whether f < g
(meaning that f(n) is o(g(n))), g < f (meaning that f(n) is
 $\omega(g(n))$) or $f \approx g$ (meaning that f(n) is (g(n))).

	f(n)	g (n)
(a)	$10n^{3} + n \lg n$	$n^3 + n lg^2 n$
(b)	2 ⁿ	3(n/2)
(c)	$lg(2^n)$	lg(3 ⁿ)
(d)	$\lg\sqrt{n}$	$\sqrt{lg n}$
(e)	$n^{\lg 4}$	2 ^{lg n}
	•	

