COMP 355 Advanced Algorithms

Greedy Algorithms for Scheduling

1

Linear-Time Sorting

- The Ω(n log n) lower bound implies that if we hope to sort numbers faster than in O(n log n) time, we cannot do it by making comparisons alone.
- Counting Sort: assumes each integer in range from 1 to k.
- Radix Sort: only practical for very small ranges of integers.
- BucketSort: works for floating-point numbers, but should only be used if numbers are roughly uniformly distributed over some range.

Rhodes College

Summary

Comparison-Based Sorting Algorithms: A stable sorting algorithm preserves the relative order of equal elements. An in-place sorting algorithm uses no additional array storage (although $O(\log n)$ additional space is allowed for the recursion stack).

Algorithm	Time	Stable	In-place
BubbleSort	$\Theta(n^2)$	Yes	Yes
InsertionSort	$\Theta(n^2)$	Yes	Yes
MergeSort	$\Theta(n \log n)$	Yes	No
HeapSort	$\Theta(n \log n)$	No	Yes
QuickSort*	$\Theta(n \log n)$	Yes/No	No/Yes

*There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place but not stable.

Non-Comparison-Based Sorting Algorithms: All of these algorithms are stable, but not in-place.

Algorithm	Assumptions	Time	Space
CountingSort	Integers over $[0k]$	$\Theta(n+k)$	$\Theta(n+k)$
RadixSort	Integers over $[0n^d]$	$\Theta(d(n+k))$	$\Theta(n+k)$
BucketSort	Integers uniformly distributed	$\Theta(n)$ (Expected)	$\Theta(n)$

Questions

- Why is the worst-case running time of bucket sort ○(n²)? What simple change to the algorithm preserves its linear time average run-time and makes its worst-case running time ○(n log n)?
- Given the data set A = {6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2}, which sorting algorithm would you use?
- Show how to sort n integers in the range 0 to n³-1 in ⊕(n) time.

Rhodes College

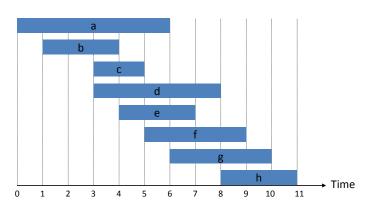
4

Greedy Algorithms

- Def: Algorithms that make locally optimal choices using a metric with the hope of finding a globally optimal solution.
- Example: Making change with US coins.
- **Optimization Problem**: Given an input, compute a solution, subject to various constraints, that either minimizes cost or maximizes profit.

5

Coin-Changing: Greedy Algorithm


Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

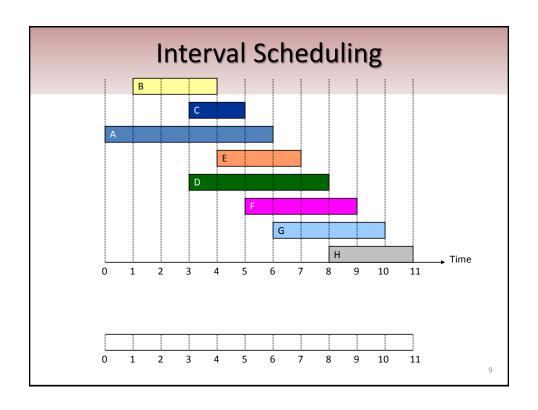
6

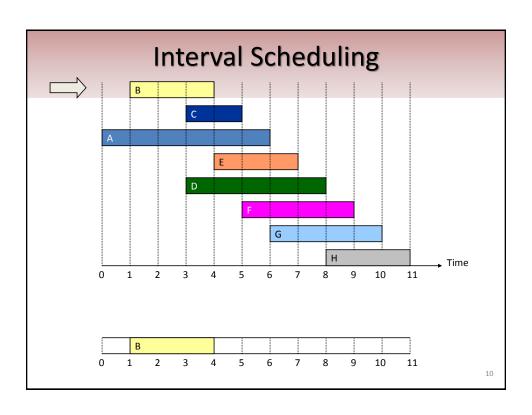
Interval Scheduling

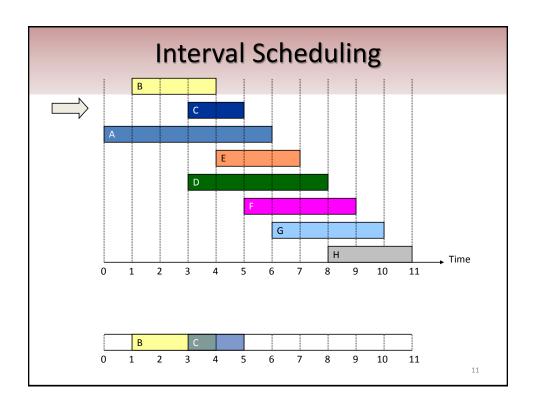
Interval scheduling.

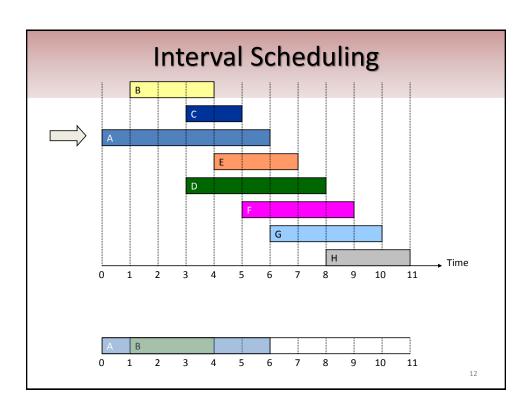
- Job j starts at s_i and finishes at f_i.
- · Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Algorithm


Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.


```
Sort jobs by finish times so that f_1 \le f_2 \le \ldots \le f_n. 
 \nearrow^{\text{jobs selected}} 
 A \leftarrow \phi 
 for j = 1 to n { 
   if (job j compatible with A) 
        A \leftarrow A \cup {j} 
 } 
 return A
```


Implementation. O(n log n).


- Remember job j* that was added last to A.
- Job j is compatible with A if s_i ≥ f_{i*}.

8

