
9/11/2017

1

COMP 355
Advanced Algorithms

1

More on Greedy Algorithms

2

Greedy Algorithms

• Optimization problem
– Given an input, compute a solution, subject to various

constraints, that either minimizes cost or maximizes
profit.

• Efficiency
– Can we produce the optimal solution without using

brute-force?

• Work for a number of optimization problems
including MSTs (optimal solution)

• Provide fast heuristics (non-optimal solution
strategies) = good approximations

9/11/2017

2

Greedy algorithm. Consider jobs in increasing order of finish time. Take each
job provided it's compatible with the ones already taken.

Implementation. O(n log n).

• Remember job j* that was added last to A.

• Job j is compatible with A if sj fj*.

Sort jobs by finish times so that f1 f2 ... fn.

A

for j = 1 to n {

if (job j compatible with A)

A A {j}

}

return A

jobs selected

Interval Scheduling: Algorithm

3

Interval Scheduling: Correctness
Two issues

- Valid schedule (output is correct)?

- Is the schedule optimal (includes maximum number of
activities)?

Theorem. Greedy algorithm produces a valid schedule.

Pf. A job j is only added to A if it is compatible with the other
jobs already in A.

4

9/11/2017

3

Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
– Assume greedy is not optimal, and let's see what happens.

– Let i1, i2, ... ik denote set of jobs selected by greedy.

– Let j1, j2, ... jm denote set of jobs in the optimal solution with
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

5

Interval Partitioning

Interval partitioning.

• Lecture j starts at sj and finishes at fj.

• Goal: find minimum number of classrooms to schedule all
lectures so that no two occur at the same time in the same
room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

6

9/11/2017

4

Interval Partitioning

Interval partitioning.

• Lecture j starts at sj and finishes at fj.

• Goal: find minimum number of classrooms to schedule all
lectures so that no two occur at the same time in the same
room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

7

Interval Partitioning: Lower Bound on
Optimal Solution

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed depth.

Ex: Depth of schedule below = 3 schedule below is
optimal.

Q. Does there always exist a schedule equal to depth of
intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

8

9/11/2017

5

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).

• For each classroom k, maintain the finish time of the last job added.

• Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 s2 ... sn.

d 0

for j = 1 to n {

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

}

number of allocated classrooms

9

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

• Let d = number of classrooms that the greedy algorithm
allocates.

• Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms.

• Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than sj.

• Thus, we have d lectures overlapping at time sj + .

• Key observation all schedules use d classrooms.

Interval Partitioning: Greedy Algorithm

10

9/11/2017

6

Scheduling to Minimizing Lateness
Minimizing lateness problem.

– Single resource processes one job at a time.

– Job j requires tj units of processing time and is due at time dj.

– If j starts at time sj, it finishes at time fj = sj + tj.

– Lateness: j = max { 0, fj - dj }.

– Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

11

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

• [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

• [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

• [Smallest slack] Consider jobs in ascending order
of slack dj - tj.

12

9/11/2017

7

Greedy template. Consider jobs in some order.

• [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

• [Smallest slack] Consider jobs in ascending order of slack
dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 d2 … dn

t 0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj t, fj t + tj
t t + tj

output intervals [sj, fj]

Greedy algorithm. Earliest deadline first.

Minimizing Lateness: Greedy Algorithms

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

14

9/11/2017

8

Minimizing Lateness: No Idle Time
Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

15

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one
with a pair of inverted jobs scheduled consecutively.

ijbefore swap

inversion

16

9/11/2017

9

Def. An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number
of inversions by one and does not increase the max lateness.

Pf. Let be the lateness before the swap, and let ' be it
afterwards.

– 'k = k for all k i, j
– 'i i

– If job j is late:

ij

i j

before swap

after swap

n)(definitio

)(

) time at finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df

f'j

fi

inversion

Minimizing Lateness: Inversions

17

Minimizing Lateness: Analysis of
Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.

• Can assume S* has no idle time.

• If S* has no inversions, then S = S*.

• If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions

– this contradicts definition of S*

18

9/11/2017

10

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform any solution to the one
found by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that
every possible solution must have a certain value. Then show that
your algorithm always achieves this bound.

19

