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Advanced Algorithms
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Huffman Encoding
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Data Storage

Normal encoding:

• ASCII or Unicode, each character represented by a 
fixed-length codeword of bits (8 or 16 bits/character)

• Easy to decode

• Not the most efficient way to store data
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Fixed Length Encoding

Suppose we have a 4-character alphabet {a, b, c, d}

Given the string “abacdaacac”, it would be encoded as

The final 20-character binary string would be 
“00010010110000100010”.

But what if we knew the frequency of the characters in 
advance?

Variable Length Encoding
Using variable length codes

Given the string “abacdaacac”, it would be encoded as

The resulting 17-character string would be “01100101110010010”. 
(savings of 3 bits)

Resulting string is 1.5n compared to 2n, for a savings of 25% in 
expected encoding length.

n(0.60 · 1 + 0.05 · 3 + 0.30 · 2 + 0.05 · 3) = n(0.60 + 0.15 + 0.60 + 0.15) = 1.5n.
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Prefix Codes

How to decode variable-length 
codes?

In the variable-length codes given in the example above no codeword
is a prefix of another (very important!)

Observe:  If two codewords did share a common prefix, e.g. a → 001 
and b → 00101, then when we see 00101, how do we know whether 
the first character of the encoded message is “a” or “b”?

Conversely: If no codeword is a prefix of any other, then as soon as we 
see a codeword appearing as a prefix in the encoded text, then we 
know that we may decode it
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Prefix Codes

Mapping of codewords to characters so that no 
codeword is a prefix of another.



9/13/2017

4

7

Expected Encoding Length

Optimal Code Generation: Given an alphabet C and the 
probabilities p(x) of occurrence for each character x ∈ C, 
compute a prefix code T that minimizes the expected length of 
the encoded bit-string, B(T).

n = # of characters in the encoded string
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Huffman’s Algorithm

• We are given the occurrence probabilities for the characters.

• Build the tree up from the leaf level.

• Take two characters x and y, and “merge” them into a single 
super-character called z (prob(z) = prob(x) + prob(y)), which 
then replaces x and y in the alphabet.

• Continue recursively building the code on the new alphabet, 
which has one fewer character.

• When done, if codeword for z is 010, then x is 0100 and y is 
0101.
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Huffman’s Algorithm

Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction 126
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Huffman Code Construction 144
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Huffman Code Construction
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Huffman Code Construction 174
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman’s Algorithm: Analysis

Recall that the cost of any encoding tree T is 

Need to show that any tree that differs from the one constructed by 
Huffman’s algorithm can be converted into one that is equal to 
Huffman’s tree without increasing its cost

The key is showing that the greedy choice is always the proper one to 
make (or at least it is as good as any other choice).

Our approach is based a few observations. 
1.The Huffman tree is a full binary tree, meaning that every internal 

node has exactly two children. 
2.The two characters with the lowest probabilities will be siblings at 

the maximum depth in the tree. 
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Huffman’s Algorithm: Analysis

Claim: Consider the two characters, x and y with the 
smallest probabilities. Then there is an optimal code 
tree in which these two characters are siblings at the 
maximum depth in the tree.



9/13/2017

14

27

Claim: Huffman’s algorithm produces an optimal prefix 
code tree.

Huffman’s Algorithm: Analysis
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Practice

What is the optimal Huffman code for the 
following set of frequencies, based on the first 8 
Fibonacci numbers?

a: 1, b:1, c:2, d:3, e:5, f:8, g:13, h:21

Can you generalize your answer to find the 
optimal code when the frequencies are the first 
n Fibonacci numbers?



9/13/2017

15

29

Next Time

• Graphs: Definitions, Representations, 
Traversals


