
9/13/2017

1

COMP 355
Advanced Algorithms

1

Huffman Encoding

2

Data Storage

Normal encoding:

• ASCII or Unicode, each character represented by a
fixed-length codeword of bits (8 or 16 bits/character)

• Easy to decode

• Not the most efficient way to store data

9/13/2017

2

3

Fixed Length Encoding

Suppose we have a 4-character alphabet {a, b, c, d}

Given the string “abacdaacac”, it would be encoded as

The final 20-character binary string would be
“00010010110000100010”.

But what if we knew the frequency of the characters in
advance?

Variable Length Encoding
Using variable length codes

Given the string “abacdaacac”, it would be encoded as

The resulting 17-character string would be “01100101110010010”.
(savings of 3 bits)

Resulting string is 1.5n compared to 2n, for a savings of 25% in
expected encoding length.

n(0.60 · 1 + 0.05 · 3 + 0.30 · 2 + 0.05 · 3) = n(0.60 + 0.15 + 0.60 + 0.15) = 1.5n.

4

9/13/2017

3

5

Prefix Codes

How to decode variable-length
codes?

In the variable-length codes given in the example above no codeword
is a prefix of another (very important!)

Observe: If two codewords did share a common prefix, e.g. a → 001
and b → 00101, then when we see 00101, how do we know whether
the first character of the encoded message is “a” or “b”?

Conversely: If no codeword is a prefix of any other, then as soon as we
see a codeword appearing as a prefix in the encoded text, then we
know that we may decode it

6

Prefix Codes

Mapping of codewords to characters so that no
codeword is a prefix of another.

9/13/2017

4

7

Expected Encoding Length

Optimal Code Generation: Given an alphabet C and the
probabilities p(x) of occurrence for each character x ∈ C,
compute a prefix code T that minimizes the expected length of
the encoded bit-string, B(T).

n = # of characters in the encoded string

8

Huffman’s Algorithm

• We are given the occurrence probabilities for the characters.

• Build the tree up from the leaf level.

• Take two characters x and y, and “merge” them into a single
super-character called z (prob(z) = prob(x) + prob(y)), which
then replaces x and y in the alphabet.

• Continue recursively building the code on the new alphabet,
which has one fewer character.

• When done, if codeword for z is 010, then x is 0100 and y is
0101.

9/13/2017

5

9

Huffman’s Algorithm

Huffman Code Construction

Character count in text.
Freq

125

93

80

76

73

71

61

55

41

40

E

Char

T

A

O

I

N

R

H

L

D

31

27

C

U

65S

10

9/13/2017

6

Huffman Code Construction

C U

31 27

125
Freq

93
80
76
73
71

61
55
41
40

E
Char

T
A
O
I
N

R
H
L
D

31
27

C
U

65S

11

Huffman Code Construction

C U

58

31 27

125
Freq

93
80
76
73
71

61

55
41
40

E
Char

T
A
O
I
N

R

H
L
D

58

65S

31
27

C
U

12

9/13/2017

7

Huffman Code Construction

C U

58

D L

81

31 27

40 41

125
Freq

93

80
76
73
71

61
58
55

E
Char

T

A
O
I
N

R

H

81

65S

41
40

L
D

13

Huffman Code Construction

H

C U

58

113

D L

81

31 27

5540 41

125
Freq

93

80
76
73
71

61

113
E

Char

T

A
O
I
N

R

81

65S

58
55H

14

9/13/2017

8

Huffman Code Construction

R S H

C U

58

113126

D L

81

31 27

5561 6540 41

125

Freq

93

80
76
73
71

113
E

Char

T

A
O
I
N

81

126

61R
65S

15

Huffman Code Construction 126

R S N I H

C U

58

113144126

D L

81

31 27

5571 7361 6540 41

125

Freq

93

80
76

144

113
E

Char

T

A
O

81

73
71

I
N

16

9/13/2017

9

Huffman Code Construction 144

R S N I H

C U

58

113144126

D L

81

156

A O

31 27

5571 7361 6540 41

80 76

126
125

Freq

93

156

113
E

Char

T
81

80
76

A
O

17

Huffman Code Construction

R S N I H

C U

58

113144126

D L

81

156 174

A O T

31 27

5571 7361 6540 41

9380 76

144
126
125

Freq

156

113
E

Char
174

93T
81

18

9/13/2017

10

Huffman Code Construction 174

R S N I

E

H

C U

58

113144126

238

T

D L

81

156 174

A O

80 76

71 7361 6540 41

31 27

55

12593

144
126

238
Freq

156

Char

125
113

E

19

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

238

156

270
Freq

174

Char

144
126

20

9/13/2017

11

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

270
330
Freq

238

Char

156
174

21

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330 508

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

330
508
FreqChar

270
238

22

9/13/2017

12

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330 508

838

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

838
FreqChar

330
508

23

Huffman Code Construction

R S N I

E

H

C U

0

0

T

D L

1

0 0

A O

0

11

1

10

0

1

1

1

1

1

1

0

0

0

0

0

1

125

Freq

93

80

76

73

71

61

55

41

40

E

Char

T

A

O

I

N

R

H

L

D

31

27

C

U

65S

0000

Fixed

0001

0010

0011

0100

0101

0111

1000

1001

1010

1011

1100

0110

110

Huff

011

000

001

1011

1010

1000

1111

0101

0100

11100

11101

1001

838Total 4.00 3.62
24

9/13/2017

13

25

Huffman’s Algorithm: Analysis

Recall that the cost of any encoding tree T is

Need to show that any tree that differs from the one constructed by
Huffman’s algorithm can be converted into one that is equal to
Huffman’s tree without increasing its cost

The key is showing that the greedy choice is always the proper one to
make (or at least it is as good as any other choice).

Our approach is based a few observations.
1.The Huffman tree is a full binary tree, meaning that every internal

node has exactly two children.
2.The two characters with the lowest probabilities will be siblings at

the maximum depth in the tree.

26

Huffman’s Algorithm: Analysis

Claim: Consider the two characters, x and y with the
smallest probabilities. Then there is an optimal code
tree in which these two characters are siblings at the
maximum depth in the tree.

9/13/2017

14

27

Claim: Huffman’s algorithm produces an optimal prefix
code tree.

Huffman’s Algorithm: Analysis

28

Practice

What is the optimal Huffman code for the
following set of frequencies, based on the first 8
Fibonacci numbers?

a: 1, b:1, c:2, d:3, e:5, f:8, g:13, h:21

Can you generalize your answer to find the
optimal code when the frequencies are the first
n Fibonacci numbers?

9/13/2017

15

29

Next Time

• Graphs: Definitions, Representations,
Traversals

