
CS355: Advanced Algorithms Fall 2017

Problem Set 1: Algorithm Design Basics

Handed out Friday, September 1. Due at the start of class Wednesday, September 13.
Upload your code for Problem 6 to Moodle by 2pm (9/13/2017).

Homework Information: Some of the problems are probably too long to attempt the night be-
fore the due date, so plan accordingly. No late homework will be accepted. Feel free to work with
others, but the work you hand in must be your own.

Notation: Throughout the semester, we will use lg x to denote logarithm of x base 2 (log2 x) and
ln x to denote the natural logarithm of x. We will use log x when the base does not matter.

Problem 1.(15 points) Consider the following simpler (extremely gender-biased) algorithm for
the stable marriage problem. As in the standard problem, there are n men, and n women, and
each man and each woman has an n-element preference list that rank orders all the members
of the opposite sex. This algorithm ignores the preferences of the women and simply pairs
each man with the first available woman on his list.

for (i = 1 to n) {

let (w[1],...,w[n]) be the women of m[i]’s preference list (from high to low)

j = 1

while (j <= n and m[i] is not yet engaged) {

if (w[j] is not yet engaged){

match m[i] with w[j] (and both are now engaged)

}

else j = j+1

}

}

(Note that in this algorithm, once a woman accept’s a man’s proposal, she will never break it
off.) We will explore the correctness of this algorithm by answering the following questions.

(a) Is this algorithm guaranteed to produce a perfect matching (that is, is every man paired
with exactly one woman and vice versa)? If so, give a proof, and if not, give a coun-
terexample and explain your counterexample.

(b) If your answer to (a) was “no”, skip the rest of this problem. Otherwise, is the matching
produced by this algorithm guaranteed to be stable? If so, give a proof, and if not,
present a counterexample and explain your counterexample.

(c) If your answer to (b) was “yes” skip this part. Otherwise, suppose that all the women
in this system have exactly the same sets of preferences, and in particular, they rank the
men in (decreasing preference) order < m1,m2, ...,mn >. (Each man’s list contains all
the women, but otherwise each man’s preferences are arbitrary.) Under this restriction,
is the matching produced by this algorithm guaranteed to be stable? As before, either
give a proof or present a counterexample.

(Note: Throughout the semester, whenever you are asked to present a counterexample, you
should strive to make your counterexample as short and clear as possible. In addition to
giving the input for the counterexample, briefly explain what the algorithm does when run
on this input and why it is wrong.)

1



CS355: Advanced Algorithms Fall 2017

Problem 2 (20 points). Consider the following summation, which holds for all n ≥ 0,

n∑
i=1

i3 =

(
n∑

i=1

i

)2

That is (13 + 23 + ... + n3) = (1 + 2 + ... + n)2.

(a) Prove this identity holds for all n ≥ 0, by induction on n. (Recall that by convention,
for n = 0 we have an empty sum, whose value is defined to be the additive identity, that
is, zero.)

(b) The following figure provides an informal “pictorial proof” of this identity. Explain why.
Hint: n = 5 in this figure, but this figure could be expanded for any n value.

Figure 1: Problem 2.

Problem 3 (20 points). For each of the parts below, list the functions in increasing asymptotic
order. In some cases functions may be asymptotically equivalent (that is f(n) is Θ(g(n))). In
such cases indicate this by writing f(n) ≈ g(n). When one is asymptotically strictly less than
the other (that is, f(n) is O(g(n)) but f(n) is not Θ(g(n))), express this as f(n) < g(n). For
example, given the set:

n2 n log n 3n + n log n

the first function is Θ(n2) and the other two are Θ(n log n), and therefore the answer would
be

n log n ≈ 3n + n log n < n2.

Explanations are not required, but may be given to help in assigning partial credit.

(a) (3/2)n 3(n/2) 2(n/3)

(b) lg n ln n lg (n2)

(c) nlg 4 2lg n 2(2 lg n)

(d) max(50n2, n3) 50n2 + n3 min(50n2, n3)

(e) dn2/20e bn2/20c n2/20

2



CS355: Advanced Algorithms Fall 2017

Problem 4.(14 points) The purpose of this problem is to design a more efficient algorithm for the
previous larger element problem, as introduced in class. Recall that we are given a sequence
of numeric values, < a1, a2, ..., an >. For each element ai, for 1 ≤ i ≤ n, we want to know the
index of the rightmost element of the sequence < a1, a2, ..., ai − 1 > whose value is strictly
larger than ai. If no element of this subsequence is larger than ai then, by convention, the
index will be 0. Here is naive the Θ(n2) algorithm from class.

previousLarger(a[1..n]) {

for (i = 1 to n) {

j = i - 1;

while (j > 0 and a[j] <= a[i]) j--;

p[i] = j;

}

return p;

}

There is one obvious source of inefficiency in this algorithm, namely the statement j--, which
steps through the array one element at a time. A more efficient approach would be to exploit
p-values that have already been constructed. (If you don’t see this right away, try drawing a
picture.) Using this insight, design a more efficient algorithm. For full credit, your algorithm
should run in Θ(n) time. Prove that your algorithm is correct and derive its running time.

Problem 5.(16 points) Consider the following recurrences defined by n ≥ 1. In each case, apply
the Master Theorem to derive an asymptotic formula for the recurrence. Try to present your
answer in the simplest form you can. Show how you derived your answer in each case.

(a) T (n) = 3T (n2 ) + 4n

(b) T (n) = 2T (n2 ) + n5

(c) T (n) = 8T (n2 ) + 3n2 + n3

(d) T (n) = 2T (n4 ) + n
√
n

Problem 6. Programming Problem (15 points) Implement insertion sort and mergesort sort-
ing algorithms in Python. Your program should allow the user to specify which sorting al-
gorithm they would like to use as well as the name of the input file they would like to use.
(You may allow for this to be entered from command line or as prompts in your code. Please
either supply comments in your code or helpful prompts so that I can easily run your code as
you intended. Please also specify if you are using Python 2 or Python 3 in the comments.)

As part of your written homework, please indicate for each sorting algorithm how
long your program takes to sort this input file:
http://cs.rhodes.edu/welshc/COMP355 F17/PS1 input.txt. (This file contains 300,000 nine-
digit integer values.)
See code example “PythonReviewInputTimingParseFile.py” in my Public directory for help
with calculating the run time of your program, parsing your input file, and getting arguments
from the command line.

You should assume that all input files are of the same format: 1 integer per line. Your output
may be the same format as the input file, or you may output the actual sorted array.

3



CS355: Advanced Algorithms Fall 2017

Example Input Example Output
23 2
10 3
9 4
43 9
126 10
97 23
81 43
2 43
4 68
68 81
43 97
3 126

4


