
CS355: Advanced Algorithms Fall 2017

Practice Problems for Midterm 2

Midterm 2 will be on Wednesday, November 1st. The exam will be closed-book and closed notes,
but you will be allowed one cheat-sheet (front and back).

Disclaimer: These are practice problems. They do not necessarily reflect the actual length,
difficulty, or coverage for the exam. You should also be sure to look over your homework problems
(problem set 3 and 4) as well as the in-class practice problems.

Problem 0. You should expect one problem in which you will be asked to work an example of
one of the algorithms we have presented in class.

Problem 1. a. Let G = (V,E) be a flow network with source s, sink t, and an integer capacity
c(u, v) for each edge (u, v) ∈ E. Let Cmax(u,v)∈Ec(u, v) (C = the maximum capacity
edge).
True or False: The minimum cut of G has capacity at most C ∗ |E|.

b. True or False. The worst-case running time of the Ford-Fulkerson network flow algo-
rithm has a true polynomial run time.

c. Given the initial array < 2, 4, 1, 3 >, how many inversions occurred?

d. A solution to a dynamic programming problem is expressed recursively. The top-down
approach applies recursion directly to solve the problem. Due to the overlapping na-
ture of the subproblems, what often happens and what technique is utilized to fix this
problem?

Problem 2. Recall that a bipartite graph is an undirected graph G whose vertex set is partitioned
into two sets U = u1, u2, ..., um and V = v1, v2, ..., vn, such that all edges have one endpoint
in U and one endpoint in V . Two edges (ui, vj) and (u′i, v

′
j) are said to cross if either i < i′

and j > j′ or if i > i′ and j < j′. A non-crossing subset is a subset of edges in G in which no
two edges cross one another (see figure below).

Figure 1: Problem 2.

Give a dynamic programming algorithm, which given a bipartite graph G = (U, V,E), com-
putes the size of the maximum non-crossing subset for G. It is sufficient to give just the
recursive rule. (Hint: The algorithm is structurally similar to the LCS algorithm.)

1

CS355: Advanced Algorithms Fall 2017

Problem 3. Recall that in the longest common subsequence (LCS) problem the input consists of
two strings X =< x1, ..., xm > and Y =< y1, ..., yn > and the objective is to compute the
longest string that is a subsequence of both X and Y . For each of the following variations,
present a short DP formulation. (It suffices to provide the recursive rule, similar to what we
did with the standard LCS problem.)

a. (LCS with wild cards) Each of the strings X and Y may contain a special character
“?′′, which is allowed to match any single character of the other string, except another
wild-card character (see the figure below (a)).

b. (LCS with swaps) Any two consecutive characters of either string are allowed to be
swapped before matching in the LCS (see the figure below (b)).

Figure 2: Problem 3.

In all cases, your revised rule should admit an O(mn) time solution.

Problem 4. Suppose you’re consulting for a bank that’s concerned about fraud detection, and
they come to you with the following problem. They have a collection of n bank cards that
they’ve confiscated, suspecting them of being used in fraud. Each bank card is a small plastic
object, containing a magnetic stripe with some encrypted data, and it corresponds to a unique
account in the bank. Each account can have many bank cards corresponding to it, and we’ll
say that two bank cards are equivalent if they correspond to the same account.
It’s very difficult to read the account number off a bank card directly, but the bank has a high-
tech “equivalence tester” that takes two bank cards and, after performing some computations,
determines whether they are equivalent.
Their question is the following: among the collection of n cards, is there a set of more than
n/2 of them that are all equivalent to one another? Assume that the only feasible operations
you can do with the cards are to pick two of them and plug them in to the equivalence tester.
Show how to decide the answer to their question with only O(n log n) invocations of the
equivalence tester.

Problem 5. Consider the following problem. You are given a flow network with unit-capacity
edges: It consists of a directed graph G = (V,E), a source s ∈ V , and a sink t ∈ V ; and
c(e) = 1 for every e ∈ E. You are also given a parameter k.

The goal is to delete k edges so as to reduce the maximum s-t flow in G by as much as
possible. In other words, you should find the set of edges F ⊆ E so that |F | = k and the
maximum s-t flow in G′ = (V,E − F) is as small as possible.

Give a polynomial-time algorithm to solve this problem.

2

