COMP 355
Advanced Algorithms

All-Pairs Shortest Paths
Section 25.2 (CLRS): Not in KT
All-Pairs Shortest Paths

• Generalization of single-source shortest path: computing shortest path between all pairs of vertices

• Let $G = (V, E)$ be a directed graph with edge weights.

• Find the cost of the shortest path between all pairs of vertices in G.
Possible Algorithms

• If no negative weights:
 – Run Dijkstra’s with each vertex as the source
 – Runtime: $O(VE \ lg V)$ (if we use binary min-heap implementation)

• If negative weights, but no negative cycles:
 – Run Bellman-Ford algorithm once from each vertex
 – Runtime: $O(V^2E)$ (on a dense graph $= O(V^4)$)

• Can we do better (assuming negative edges)?
 – Yes! $O(V^3)$ using dynamic programming
• Input Format:
 – input is an \(n \times n \) matrix \(w \) of edge weights, which are based on the edge weights in the digraph.
 – We let \(w_{ij} \) denote the entry in row \(i \) and column \(j \) of \(w \).

\[
 w_{ij} = \begin{cases}
 0 & \text{if } i = j, \\
 w(i, j) & \text{if } i \neq j \text{ and } (i, j) \in E, \\
 +\infty & \text{if } i \neq j \text{ and } (i, j) \notin E.
 \end{cases}
\]

• Output Format:
 – \(n \times n \) distance matrix \(D = d_{ij} \) where \(d_{ij} = \delta(i, j) \), the shortest path from vertex \(i \) to vertex \(j \).
 – To recover the actual shortest path, we can compute an auxiliary matrix \(\text{mid}[i, j] \) where the value of \(\text{mid}[i, j] \) will be a vertex that is somewhere along the path from \(i \) to \(j \). (null if no such vertex exists)
Observations

• A shortest path does not contain the same vertex more than once.

• For a shortest path from i to j such that any intermediate vertices on the path are chosen from the set \{1, 2, ..., k\}, there are two possibilities:

 1. k is not a vertex on the path, so the shortest such path has length d_{ij}^{k-1}

 2. k is a vertex on the path, so the shortest such path is $d_{ik}^{k-1} + d_{kj}^{k-1}$

• So we see that we can recursively define $d_{ij}^{(k)}$ as

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \geq 1 \end{cases}$$
Floyd-Warshall Algorithm

```java
Floyd_Warshall(int n, int w[1..n, 1..n]) {
    array d[1..n, 1..n]
    for i = 1 to n do {
        for j = 1 to n do {
            d[i,j] = W[i,j]
            mid[i,j] = null
        }
    }
    for k = 1 to n do {
        for i = 1 to n do {
            for j = 1 to n do {
                if (d[i,k] + d[k,j]) < d[i,j]) {
                    d[i,j] = d[i,k] + d[k,j] // new shorter path length
                    mid[i,j] = k // new path is through k
                }
            }
        }
    }
    return d // matrix of distances
}
```

Running Time: $\Theta(n^3)$
Space Required: $\Theta(n^2)$
Floyd-Warshall Algorithm: Example

Fig. 42: Floyd-Warshall Example. Newly updated entries are circled.
Consider the graph in Figure 1. For this graph, we would initialize \(D \) and \(P \) to be:

\[
D = \begin{pmatrix}
0 & 3 & 8 & \infty & 4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & 5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0 \\
\end{pmatrix}, \quad P = \begin{pmatrix}
NIL & 1 & 1 & NIL & 1 \\
NIL & NIL & NIL & 2 & 2 \\
NIL & 3 & NIL & NIL & NIL \\
4 & NIL & 4 & NIL & NIL \\
NIL & NIL & NIL & 5 & NIL \\
\end{pmatrix}
\]

and our final values for \(D \) and \(P \) are:

\[
D = \begin{pmatrix}
0 & 3 & 8 & 4 & 4 \\
3 & 0 & 6 & 1 & 7 \\
7 & 4 & 0 & 5 & 11 \\
2 & 5 & 5 & 0 & 6 \\
8 & 11 & 11 & 6 & 0 \\
\end{pmatrix}, \quad P = \begin{pmatrix}
NIL & 1 & 1 & 2 & 1 \\
4 & NIL & 4 & 2 & 2 \\
4 & 3 & NIL & 2 & 2 \\
4 & 1 & 4 & NIL & 1 \\
4 & 1 & 4 & 5 & NIL \\
\end{pmatrix}
\]
Proof of Correctness

Inductive Hypothesis

Suppose that prior to the kth iteration it holds that for $i, j \in V$, d_{ij} contains the length of the shortest path Q from i to j in G containing only vertices in the set $\{1, 2, \ldots, k-1\}$, and π_{ij} contains the immediate predecessor of j on path Q.
Applications

- Detecting the Presence of a Negative Cycle
- Transitive Closure of a Directed Graph
Other All-Pairs Shortest Paths Algorithms

- Dynamic Programming Approach Based on Matrix Multiplication
- Johnson’s Algorithm for Sparse Graphs
Practice

Apply the Floyd-Warshall algorithm, which finds the shortest paths and their lengths, to the following problem instance:

\[
D^{(0)} = \begin{pmatrix}
0 & \infty & 3 & \infty \\
2 & 0 & \infty & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \infty & 0
\end{pmatrix}
\]
Next Time

• Review Session
• Come with questions!!
 – We can go over solutions to the review questions, homework, or other questions that you have