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Abstract. We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particu-
larly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified
analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter
settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning
confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method
also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns
and Mansour.

We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly
to the multi-label case in which each example may belong to more than one class. We give two boosting methods
for this problem, plus a third method based on output coding. One of these leads to a new method for handling
the single-label case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally,
we give some experimental results comparing a few of the algorithms discussed in this paper.
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1. Introduction

Boosting is a method of finding a highly accurate hypothesis (classification rule) by com-
bining many “weak” hypotheses, each of which is only moderately accurate. Typically,
each weak hypothesis is a simple rule which can be used to generate a predicted clas-
sification for any instance. In this paper, we study boosting in an extended framework in
which each weak hypothesis generates not only predicted classifications, but also self-rated
confidence scores which estimate the reliability of each of its predictions.

There are two essential questions which arise in studying this problem in the boosting
paradigm. First, how do we modify known boosting algorithms designed to handle only
simple predictions to use confidence-rated predictions in the most effective manner possi-
ble? Second, how should we design weak learners whose predictions are confidence-rated
in the manner described above? In this paper, we give answers to both of these questions.
The result is a powerful set of boosting methods for handling more expressive weak hy-
potheses, as well as an advanced methodology for designing weak learners appropriate for
use with boosting algorithms.

We base our work on Freund and Schapire’s (1997) AdaBoost algorithm which has re-
ceived extensive empirical and theoretical study (Bauer & Kohavi, to appear; Breiman,
1998; Dietterich, to appear; Dietterich & Bakiri, 1995; Drucker & Cortes, 1996; Fre-
und & Schapire, 1996; Maclin & Opitz, 1997; Margineantu & Dietterich, 1997; Quinlan,
1996; Schapire, 1997; Schapire, Freund, Bartlett, & Lee, 1998; Schwenk & Bengio, 1998).
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To boost using confidence-rated predictions, we propose a generalization of AdaBoost in
which the main parameters «; are tuned using one of a number of methods that we de-
scribe in detail. Intuitively, the a;’s control the influence of each of the weak hypotheses.
To determine the proper tuning of these parameters, we begin by presenting a streamlined
version of Freund and Schapire’s analysis which provides a clean upper bound on the
training error of AdaBoost when the parameters o are left unspecified. For the purposes
of minimizing training error, this analysis provides an immediate clarification of the crite-
rion that should be used in setting ;. As discussed below, this analysis also provides the
criterion that should be used by the weak learner in formulating its weak hypotheses.

Based on this analysis, we give a number of methods for choosing a;;. We show that the
optimal tuning (with respect to our criterion) of a; can be found numerically in general,
and we give exact methods of setting «; in special cases.

Freund and Schapire also considered the case in which the individual predictions of the
weak hypotheses are allowed to carry a confidence. However, we show that their setting of
ay is only an approximation of the optimal tuning which can be found using our techniques.

We next discuss methods for designing weak learners with confidence-rated predictions
using the criterion provided by our analysis. For weak hypotheses which partition the
instance space into a small number of equivalent prediction regions, such as decision trees,
we present and analyze a simple method for automatically assigning a level of confidence
to the predictions which are made within each region. This method turns out to be closely
related to a heuristic method proposed by Quinlan (1996) for boosting decision trees. Our
analysis can be viewed as a partial theoretical justification for his experimentally successful
method.

Our technique also leads to a modified criterion for selecting such domain-partitioning
weak hypotheses. In other words, rather than the weak learner simply choosing a weak
hypothesis with low training error as has usually been done in the past, we show that,
theoretically, our methods work best when combined with a weak learner which minimizes
an alternative measure of “badness.” For growing decision trees, this measure turns out to
be identical to one earlier proposed by Kearns and Mansour (1996).

Although we primarily focus on minimizing training error, we also outline methods that
can be used to analyze generalization error as well.

Next, we show how to extend the methods described above for binary classification prob-
lems to the multiclass case, and, more generally, to the multi-label case in which each ex-
ample may belong to more than one class. Such problems arise naturally, for instance, in
text categorization problems where the same document (say, a news article) may easily be
relevant to more than one topic (such as politics, sports, etc.).

Freund and Schapire (1997) gave two algorithms for boosting multiclass problems, but
neither was designed to handle the multi-label case. In this paper, we present two new
extensions of AdaBoost for multi-label problems. In both cases, we show how to apply the
results presented in the first half of the paper to these new extensions.

In the first extension, the learned hypothesis is evaluated in terms of its ability to predict a
good approximation of the set of labels associated with a given instance. As a special case,
we obtain a novel boosting algorithm for multiclass problems in the more conventional
single-label case. This algorithm is simpler but apparently as effective as the methods
given by Freund and Schapire. In addition, we propose and analyze a modification of
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this method which combines these techniques with Dietterich and Bakiri’s (1995) output-
coding method. (Another method of combining boosting and output coding was proposed
by Schapire (1997). Although superficially similar, his method is in fact quite different
from what is presented here.)

In the second extension to multi-label problems, the learned hypothesis instead predicts,
for a given instance, a ranking of the labels, and it is evaluated based on its ability to place
the correct labels high in this ranking. Freund and Schapire’s AdaBoost.M2 is a special
case of this method for single-label problems.

Although the primary focus of this paper is on theoretical issues, we give some exper-
imental results comparing a few of the new algorithms. We obtain especially dramatic
improvements in performance when a fairly large amount of data is available, such as large
text categorization problems.

2. A Generalized Analysis of Adaboost

LetS = ((z1,91),---,(Tm,ym)) be asequence of training examples where each instance
x; belongs to a domain or instance space X', and each label y; belongs to a finite label
space Y. For now, we focus on binary classification problems in which Y = {-1,+1}.

We assume access to a weak or base learning algorithm which accepts as input a sequence
of training examples .S along with a distribution D over {1,...,m}, i.e., over the indices
of S. Given such input, the weak learner computes a weak (or base) hypothesis . In
general, h has the form h : X — R. We interpret the sign of h(x) as the predicted label
(=1 or +1) to be assigned to instance z, and the magnitude |h(x)| as the “confidence” in
this prediction. Thus, if h(x) is close to or far from zero, it is interpreted as a low or high
confidence prediction. Although the range of h may generally include all real numbers, we
will sometimes restrict this range.

The idea of boosting is to use the weak learner to form a highly accurate prediction rule
by calling the weak learner repeatedly on different distributions over the training examples.
A slightly generalized version of Freund and Schapire’s AdaBoost algorithm is shown in
Figure 1. The main effect of AdaBoost’s update rule, assuming a; > 0, is to decrease
or increase the weight of training examples classified correctly or incorrectly by A (i.e.,
examples ¢ for which y; and h;(x;) agree or disagree in sign).

Our version differs from Freund and Schapire’s in that (1) weak hypotheses can have
range over all of R rather than the restricted range [—1,+1] assumed by Freund and
Schapire; and (2) whereas Freund and Schapire prescribe a specific choice of o, we leave
this choice unspecified and discuss various tunings below. Despite these differences, we
continue to refer to the algorithm of Figure 1 as “AdaBoost.”

As discussed below, when the range of each h; is restricted to [-1, +1], we can choose
oy appropriately to obtain Freund and Schapire’s original AdaBoost algorithm (ignoring
superficial differences in notation). Here, we give a simplified analysis of the algorithm in
which «; is left unspecified. This analysis yields an improved and more general method
for choosing ay.

Let
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Given: (z1,91)y-- - (Tm,ym); xi € X, y; € {—1,+1}
Initialize D (¢) = 1/m.
Fort=1,...,T:

Train weak learner using distribution D,.
Get weak hypothesis h; : X — R.
Choose a; € R.

Update:

Dy (7) exp(—auyihe (i)
Zy

Dyy1(3) =

where Z; is a normalization factor (chosen so that D;; will be a distribution).

Output the final hypothesis:

T
H(z) =sign (Z atht(a:)> .

Figure 1. A generalized version of AdaBoost.

T
f@) =3 arhi(a)
t=1

so that H(z) = sign(f(z)). Also, for any predicate 7, let [#] be 1 if # holds and 0
otherwise. We can prove the following bound on the training error of H.

THEOREM 1 Assuming the notation of Figure 1, the following bound holds on the training
error of H:

1 T
m i: H(z:) # yi}| < ][ %

Proof: By unraveling the update rule, we have that

exp (— >, awyihe(;))
m Ht Z
exp (—y; f(w;))

T T wiLz @

Moreover, if H(z;) # y; theny; f(x;) < 0 implying that exp(—y; f(z;)) > 1. Thus,

Drya(i) =

[H(z:) # yi] < exp(—yif(xi)). (2
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Combining Egs. (1) and (2) gives the stated bound on training error since

% Z[[H(a:,) #yi] < % ZexP(_yif(wi))

(1) e
= 1:[Zt.

[ |

The important consequence of Theorem 1 is that, in order to minimize training error,
a reasonable approach might be to greedily minimize the bound given in the theorem by
minimizing Z; on each round of boosting. We can apply this idea both in the choice of «;
and as a general criterion for the choice of weak hypothesis ;.

Before proceeding with a discussion of how to apply this principle, however, we digress
momentarily to give a slightly different view of AdaBoost. Let H = {g1,...,gn} be the
space of all possible weak hypotheses, which, for simplicity, we assume for the moment
to be finite. Then AdaBoost attempts to find a linear threshold of these weak hypotheses
which gives good predictions, i.e., a function of the form

N
H(z) =sign Z a;jg;(x)
j=1

By the same argument used in Theorem 1, it can be seen that the number of training
mistakes of H is at most

m N
D exp | =y Y ajg;(i) | - ©)
i=1 j=1

AdaBoost can be viewed as a method for minimizing the expression in Eq. (3) over the
coefficients g; by a greedy coordinate-wise search: On each round ¢, a coordinate j is
chosen corresponding to k., that is, hy = g;. Next, the value of the coefficient g; is
modified by adding « to it; all other coefficient are left unchanged. It can be verified that
the quantity Z; measures exactly the ratio of the new to the old value of the exponential
sum in Eq. (3) so that [], Z; is the final value of this expression (assuming we start with
all a;’s set to zero).

See Friedman, Hastie and Tibshirani (1998) for further discussion of the rationale for
minimizing Eq. (3), including a connection to logistic regression. See also Appendix A for
further comments on how to minimize expressions of this form.

3. Choosing a;

To simplify notation, let us fix ¢ and let w = y;hi(z;), Z = Z;, D = Dy, h = hy and
a = ay. In the following discussion, we assume without loss of generality that D(i) # 0
for all 4. Our goal is to find a which minimizes or approximately minimizes Z as a function
of a. We describe a number of methods for this purpose.
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3.1. Deriving Freund and Schapire’s choice of a4

We begin by showing how Freund and Schapire’s (1997) version of AdaBoost can be de-
rived as a special case of our new version. For weak hypotheses h with range [—1, +1],
their choice of o can be obtained by approximating Z as follows:

Z =) D(i)e ™"

§:Da>(“gmea+ﬁigﬁw). @

This upper bound is valid since u; € [—1,+1], and is in fact exact if & has range {—1, +1}
(sothatu; € {—1,+1}). (A proof of the bound follows immediately from the convexity
of e~ for any constant « € R.) Next, we can analytically choose « to minimize the right
hand side of Eq. (4) giving

1
azéln( +T)
1—r

where r = 3~ D(i)u;. Plugging into Eq. (4), this choice gives the upper bound

IA

Z </1—1r2,

We have thus proved the following corollary of Theorem 1 which is equivalent to Freund
and Schapire’s (1997) Theorem 6:

COROLLARY 1 ((FREUND & SCHAPIRE, 1997)) Using the notation of Figure 1, assume
each h; has range [—1, +1] and that we choose

147
”:%m(rwg

where

Ty = Z Dy(i)yiht(zi) = Einp, [yihe(zi)] -

Then the training error of H is at most
T
H A/ 1-— T?.
t=1

Thus, with this setting of a, it is reasonable to try to find A, that maximizes |r;| on each
round of boosting. This quantity r; is a natural measure of the correlation of the predictions
of h; and the labels y; with respect to the distribution D;. It is closely related to ordinary
error since, if h; has range {—1, +1} then
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Prp, [he(me) # 9] = 5
S0 maximizing r; is equivalent to minimizing error. More generally, if h; has range
[—1,+1] then (1—7;)/2 is equivalent to the definition of error used by Freund and Schapire
(€¢ in their notation).

The approximation used in Eq. (4) is essentially a linear upper bound of the function
e ** ontherange z € [—1, +1]. Clearly, other upper bounds which give a tighter approx-
imation could be used instead, such as a quadratic or piecewise-linear approximation.

3.2. A numerical method for the general case

We next give a general numerical method for exactly minimizing Z with respect to a.
Recall that our goal is to find o which minimizes

Z(a)=Z =) D(i)e ™.

The first derivative of Z is

Z'(a) = o = —ZD(z)uie i

K3
~Z Y Deya(i)u;
1

by definition of D,;. Thus, if D, is formed using the value of a; which minimizes Z;
(so that Z'(a) = 0), then we will have that

Z D41 (i)u; = Eijnp, ., [yihe(zi)] = 0.

In words, this means that, with respect to distribution D1, the weak hypothesis h; will
be exactly uncorrelated with the labels y;.

It can easily be verified that Z'(a) = d? Z/da? is strictly positive for all & € R (ignoring
the trivial case that u; = 0 for all 7). Therefore, Z'(a) can have at most one zero. (See also
Appendix A.)

Moreover, if there exists 4 such that u; < 0 then Z'(a)) — oo as a — oo. Similarly,
Z'(a) » —o0 as a — —oo if u; > 0 for some 4. This means that Z'(«) has at least one
root, except in the degenerate case that all non-zero u;’s are of the same sign. Furthermore,
because Z'(«) is strictly increasing, we can numerically find the unique minimum of Z(«)
by a simple binary search, or more sophisticated numerical methods.

Summarizing, we have argued the following:

THEOREM 2

1. Assume the set {y;h:(x;) : ¢ = 1,...,m} includes both positive and negative values.
Then there exists a unique choice of a; which minimizes Z;.

2. For this choice of oy, we have that

EivDog [Wihe(z:)] = 0.
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3.3.  An analytic method for weak hypotheses that abstain

We next consider a natural special case in which the choice of a; can be computed analyt-
ically rather than numerically.

Suppose that the range of each weak hypothesis h; is now restricted to {—1,0,+1}. In
other words, a weak hypothesis can make a definitive prediction that the label is —1 or +1,
or it can “abstain” by predicting 0. No other levels of confidence are allowed. By allowing
the weak hypothesis to effectively say “I don’t know,” we introduce a model analogous to
the “specialist” model of Blum (1997), studied further by Freund et al. (1997).

For fixed ¢, let Wp, W_1, W1 be defined by

i:u;=b

for b € {—1,0,+1}, where, as before, u; = y;h:(z;), and where we continue to omit
the subscript ¢ when clear from context. Also, for readability of notation, we will often
abbreviate subscripts +1 and —1 by the symbols + and — so that W is written W, and
W_4 is written W_. We can calculate Z as:

Z = ZD(i)e’“"
= > > D)™

be{—1,0,+1} i:u;=b
= Wo+W_e* + Wye ™

It can easily be verified that Z is minimized when

a:%ln(%).

For this setting of «, we have

7 =Wo+2/W_Wy,. )

For this case, Freund and Schapire’s original AdaBoost algorithm would instead have
made the more conservative choice

1 W++%WO
a=3ln W L. o
-T3

giving a value of Z which is necessarily inferior to Eq. (5), but which Freund and Schapire
(1997) are able to upper bound by

7 < 2\/(W_ + s Wo) (W + LT00). ©6)

If Wy = 0 (so that i has range {—1, +1}), then the choices of a and resulting values of Z
are identical.
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4. A Criterion for Finding Weak Hypotheses

So far, we have only discussed using Theorem 1 to choose a. In general, however, this
theorem can be applied more broadly to guide us in the design of weak learning algorithms
which can be combined more powerfully with boosting.

In the past, it has been assumed that the goal of the weak learning algorithm should
be to find a weak hypothesis A with a small number of errors with respect to the given
distribution D, over training samples. The results above suggest, however, that a different
criterion can be used. In particular, we can attempt to greedily minimize the upper bound
on training error given in Theorem 1 by minimizing Z; on each round. Thus, the weak
learner should attempt to find a weak hypothesis A which minimizes

Zy = ZDt(i)eXP(—atyiht(ﬂfi))-

This expression can be simplified by folding o into Ay, in other words, by assuming with-
out loss of generality that the weak learner can freely scale any weak hypothesis A by any
constant factor a € R. Then (omitting ¢ subscripts), the weak learner’s goal now is to
minimize

Z = Z D(i) exp(—y;h(z;)). (7

k3

For some algorithms, it may be possible to make appropriate modifications to handle such
a “loss” function directly. For instance, gradient-based algorithms, such as backprop, can
easily be modified to minimize Eq. (7) rather than the more traditional mean squared error.

We show how decision-tree algorithms can be modified based on the new criterion for
finding good weak hypotheses.

4.1. Domain-partitioning weak hypotheses

We focus now on weak hypotheses which make their predictions based on a partitioning
of the domain X. To be more specific, each such weak hypothesis is associated with
a partition of X into disjoint blocks X, ..., Xy which cover all of X and for which
h(z) = h(z') for all z,2' € X;. In other words, h’s prediction depends only on which
block X; a given instance falls into. A prime example of such a hypothesis is a decision
tree whose leaves define a partition of the domain.

Suppose that D = D, and that we have already found a partition X, ..., X of the
space. What predictions should be made for each block of the partition? In other words,
how do we find a function » : X — R which respects the given partition and which
minimizes Eq. (7)?

Let ¢; = h(z) for z € X;. Our goal is to find appropriate choices for ¢;. For each j and
forb e {—1,+1}, let

W) = Y D() = Prplzi € X; Ay = 1]
e €XjAyi=b
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be the weighted fraction of examples which fall in block 5 with label . Then Eqg. (7) can
be rewritten

Z =Y Y D(i)exp(-yic;)

7 vz EXJ'

= 3 (Wies +wie). ®

J

Using standard calculus, we see that this is minimized when

Wj

Plugging into Eqg. (8), this choice gives
Z =23 \/wiw’. (10)
J

Note that the sign of ¢; is equal to the (weighted) majority class within block j. Moreover,
¢; will be close to zero (a low confidence prediction) if there is a roughly equal split of
positive and negative examples in block j. Likewise, c; will be far from zero if one label
strongly predominates.

A similar scheme was previously proposed by Quinlan (1996) for assigning confidences
to the predictions made at the leaves of a decision tree. Although his scheme differed in
the details, we feel that our new theory provides some partial justification for his method.

The criterion given by Eq. (10) can also be used as a splitting criterion in growing a de-
cision tree, rather than the Gini index or an entropic function. In other words, the decision
tree could be built by greedily choosing the split which causes the greatest drop in the value
of the function given in Eq. (10). In fact, exactly this splitting criterion was proposed by
Kearns and Mansour (1996). Furthermore, if one wants to boost more than one decision
tree then each tree can be built using the splitting criterion given by Eq. (10) while the
predictions at the leaves of the boosted trees are given by Eq. (9).

4.2. Smoothing the predictions

The scheme presented above requires that we predict as in Eq. (9) on block j. It may well
happen that W’ or W is very small or even zero, in which case c; will be very large or
infinite in magnitude. In practice, such large predictions may cause numerical problems. In
addition, there may be theoretical reasons to suspect that large, overly confident predictions
will increase the tendency to overfit.

To limit the magnitudes of the predictions, we suggest using instead the “smoothed”
values

Wj
Cj = %ln (Wj16>
s 3
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for some appropriately small positive value of . Because W7 and Wi are both bounded
between 0 and 1, this has the effect of bounding |c;| by

1+e
%1n< . ) ~ L1In(1/e).

Moreover, this smoothing only slightly weakens the value of Z since, plugging into Eq. (8)

gives
S| W | W
7 Wi+e W2 +e

Z (\/(WZ +e)Wi+ \/(W_{ + g)Wi)

3 (2\/WZWJ{ +/eWd + sWZ)

J

< 2) /W Wi+ V2Ne. (11)

J

IA

IN

In the second inequality, we used the inequality /z +y < \/x 4+ /y for nonnegative =
and y. In the last inequality, we used the fact that

> W +wi) =1,

J

which implies

EJ:(\/W>1+\/W>]F)§¢W

(Recall that N is the number of blocks in the partition.) Thus, comparing Egs. (11)
and (10), we see that Z will not be greatly degraded by smoothing if we choose ¢ «
1/(2N). In our experiments, we have typically used € on the order of 1/m where m is the
number of training examples.

5. Generalization Error

So far, we have only focused on the training error, even though our primary objective is to
achieve low generalization error.

Two methods of analyzing the generalization error of AdaBoost have been proposed.
The first, given by Freund and Schapire (1997), uses standard VC-theory to bound the
generalization error of the final hypothesis in terms of its training error and an additional
term which is a function of the VC-dimension of the final hypothesis class and the number
of training examples. The VC-dimension of the final hypothesis class can be computed
using the methods of Baum and Haussler (1989). Interpretting the derived upper bound as
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a qualitative prediction of behavior, this analysis suggests that AdaBoost is more likely to
overfit if run for too many rounds.

Schapire et al. (1998) proposed an alternative analysis to explain AdaBoost’s empirically
observed resistance to overfitting. Following the work of Bartlett (1998), this method is
based on the “margins” achieved by the final hypothesis on the training examples. The
margin is a measure of the “confidence” of the prediction. Schapire et al. show that larger
margins imply lower generalization error — regardless of the number of rounds. Moreover,
they show that AdaBoost tends to increase the margins of the training examples.

To a large extent, their analysis can be carried over to the current context, which is the
focus of this section. As a first step in applying their theory, we assume that each weak
hypothesis h; has bounded range. Recall that the final hypothesis has the form

H(x) = sign(f(z))

where

@) = Y achi(@).
t

Since the h;’s are bounded and since we only care about the sign of f, we can rescale
the h;’s and normalize the a;’s allowing us to assume without loss of generality that each
hy + X = [-1,+1],each oy € [0,1] and >, oy = 1. Let us also assume that each h;
belongs to a hypothesis space H.

Schapire et al. define the margin of a labeled example (z,y) to be yf(x). The margin
then is in [—1,+1], and is positive if and only if H makes a correct prediction on this
example. We further regard the magnitude of the margin as a measure of the confidence of
H’s prediction.

Schapire et al.’s results can be applied directly in the present context only in the special
case that each h € # has range {—1,+1}. This case is not of much interest, however,
since our focus is on weak hypotheses with real-valued predictions. To extend the margins
theory, then, let us define d to be the pseudodimension of # (for definitions, see, for in-
stance, Haussler (1992)). Then using the method sketched in Section 2.4 of Schapire et al.
together with Haussler and Long’s (1995) Lemma 13, we can prove the following upper
bound on generalization error which holds with probability 1 — § for all & > 0 and for all
f of the form above:

9 1/2
Prs [yf(z) < 6] +0 (% (C“gei(m/d) n 1og<1/<s>) ) .

Here, Prgs denotes probability with respect to choosing an example (x,y) uniformly at
random from the training set. Thus, the first term is the fraction of training examples with
margin at most 6. A proof outline of this bound was communicated to us by Peter Bartlett
and is provided in Appendix B.

Note that, as mentioned in Section 4.2, this margin-based analysis suggests that it may
be a bad idea to allow weak hypotheses which sometimes make predictions that are very
large in magnitude. If |h:(z)]| is very large for some z, then rescaling h; leads to a very
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large coefficient ¢; which, in turn, may overwhelm the other coefficients and so may dra-
matically reduce the margins of some of the training examples. This, in turn, according to
our theory, can have a detrimental effect on the generalization error.

It remains to be seen if this theoretical effect will be observed in practice, or, alternatively,
if an improved theory can be developed.

6. Multiclass, Multi-label Classification Problems

We next show how some of these methods can be extended to the multiclass case in which
there may be more than two possible labels or classes. Moreover, we will consider the
more general multi-label case in which a single example may belong to any number of
classes.

Formally, we let Y be a finite set of labels or classes, and let &k = |)|. In the traditional
classification setting, each example x € X is assigned a single class y € ) (possibly via a
stochastic process) so that labeled examples are pairs (z,y). The goal then, typically, is to
find a hypothesis H : X — Y which minimizes the probability that y # H(x) on a newly
observed example (z, y).

In the multi-label case, each instance z € X may belong to multiple labels in ). Thus,
a labeled example is a pair (z,Y) where Y C ) is the set of labels assigned to z. The
single-label case is clearly a special case in which |Y'| = 1 for all observations.

It is unclear in this setting precisely how to formalize the goal of a learning algorithm,
and, in general, the “right” formalization may well depend on the problem at hand. One
possibility is to seek a hypothesis which attempts to predict just one of the labels assigned
to an example. In other words, the goal is to find H : X — Y which minimizes the
probability that H(z) ¢ Y on a new observation (z,Y"). We call this measure the one-
error of hypothesis H since it measures the probability of not getting even one of the
labels correct. We denote the one-error of a hypothesis h with respect to a distribution D
over observations (z,Y") by one-errp(H). That is,

one-errp(H) = Pr(, yyp [H(z) € Y].

Note that, for single-label classification problems, the one-error is identical to ordinary er-
ror. In the following sections, we will introduce other loss measures that can be used in the
multi-label setting, namely, Hamming loss and ranking loss. We also discuss modifications
to AdaBoost appropriate to each case.

7. Using Hamming Loss for Multiclass Problems

Suppose now that the goal is to predict all and only all of the correct labels. In other
words, the learning algorithm generates a hypothesis which predicts sets of labels, and
the loss depends on how this predicted set differs from the one that was observed. Thus,
H : X — 2Y and, with respect to a distribution D, the loss is

1
P E@,y)~p [ |M(z) AY]]
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Given: (z1,Y1),---,(Tm,Ym) Wherez; € X, Y; C Y
Initialize D1 (%, £) = 1/(mk).
Fort=1,...,T:

Train weak learner using distribution D,.
Get weak hypothesis h; : X x Y — R.
Choose a; € R.

Update:

D, (i, £) exp(— oy Y;[€)hi (i, £))
Zy

Dt+1(i7 E) =

where Z; is a normalization factor (chosen so that D;; will be a distribution).

Output the final hypothesis:

T
H(x,¢) = sign (Z atht(w,€)> .

t=1

Figure 2. AdaBoost.MH: A multiclass, multi-label version of AdaBoost based on Hamming loss.

where A denotes symmetric difference. (The leading 1/k is meant merely to ensure a value
in [0,1].) We call this measure the Hamming loss of H, and we denote it by hlossp(H).

To minimize Hamming loss, we can, in a natural way, decompose the problem into &
orthogonal binary classification problems. That is, we can think of Y as specifying &
binary labels (depending on whether a label y is or is not included in Y). Similarly, h(z)
can be viewed as & binary predictions. The Hamming loss then can be regarded as an
average of the error rate of 4 on these k binary problems.

ForY C Y, let us define Y[¢] for £ € ) to be

_[H+1ifLeY
Y[E]—{—1 ifLgy.

To simplify notation, we also identify any function H : X — 2% with a corresponding
two-argument function H : X x Y — {—1,+1} defined by H(z, ¢) = H(z)[{].

With the above reduction to binary classification in mind, it is rather straightforward
to see how to use boosting to minimize Hamming loss. The main idea of the reduction
is simply to replace each training example (z;,Y;) by k examples ((z;, ), Y;[£]) for £ €
Y. The result is a boosting algorithm called AdaBoost.MH (shown in Figure 2) which
maintains a distribution over examples ¢ and labels £. On round ¢, the weak learner accepts
such a distribution D; (as well as the training set), and generates a weak hypothesis h; :
X xY — R. This reduction also leads to the choice of final hypothesis shown in the figure.

The reduction used to derive this algorithm combined with Theorem 1 immediately im-
plies a bound on the Hamming loss of the final hypothesis:



IMPROVED BOOSTING ALGORITHMS 15

THEOREM 3 Assuming the notation of Figure 2, the following bound holds for the Ham-
ming loss of H on the training data:

T
hloss(H) < H 7.
t=1

We now can apply the ideas in the preceding sections to this binary classification prob-
lem. As before, our goal is to minimize

Zy = Z Dy (i, £) exp(—ay Yi[€] hy (25, £)) (12)
il
on each round. (Here, it is understood that the sum is over all examples indexed by ¢ and

all labels ¢ € Y.)
As in Section 3.1, if we require that each h; have range {—1, +1} then we should choose

1+7r
at:%m(l_;) (13)
where
re =Y Dy(i, £) Yi[] h(i, £). (14)
it
This gives

Zt:wl—rtz

and the goal of the weak learner becomes maximization of |r|.
Note that (1 — r;)/2 is equal to

Pr(;,ey~p, [hi(xi,£) # Yi[f]]
which can be thought of as a weighted Hamming loss with respect to D;.

Example. As an example of how to maximize |r;|, suppose our goal is to find an oblivious
weak hypothesis h; which ignores the instance = and predicts only on the basis of the
label £. Thus we can omit the z argument and write h.(z,£) = h(£). Let us also omit ¢
subscripts. By symmetry, minimizing —r is equivalent to maximizing r. So, we only need
to find A which maximizes

r = D(i,0) Yi[€] h(t)

il

> lh(@)ZD(u)Yi[ﬂ]

4
Clearly, this is maximized by setting

h(£) = sign (Z D(i,0) m[e]) .
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7.1. Domain-partitioning weak hypotheses

We also can combine these ideas with those in Section 4.1 on domain-partitioning weak
hypotheses. As in Section 4.1, suppose that A is associated with a partition X1,..., Xy
of the space X. It is natural then to create partitions of the form X x ) consisting of all
sets X; x {¢} forj = 1,...,N and £ € Y. An appropriate hypothesis h can then be
formed which predicts h(x,£) = ¢, for x € X;. According to the results of Section 4.1,
we should choose

wit
cje=11n (W—L) (15)

where ije =, D@, 0)[x; € X; AY;[€] = b]. This gives
zZ =23y wi'w. (16)
it

7.2. Relation to one-error and single-label classification

We can use these algorithms even when the goal is to minimize one-error. The most natural
way to do this is to set

H'(z) = argmaXZatht(m,y), (17)
v t
i.e., to predict the label y most predicted by the weak hypotheses. The next simple theorem
relates the one-error of H'! and the Hamming loss of H.
THEOREM 4 With respect to any distribution D over observations (z,Y’) where Y # 0,

one-errp(H') < khlossp (H).

Proof: Assume Y # () and suppose H!(z) ¢ Y. We argue that this implies H(z) # Y. If
the maximum in Eq. (17) is positive, then H!(z) € H(x)—Y . Otherwise, if the maximum
is nonpositive, then H(z) = § # Y. Ineither case, H(z) # Y, i.e., |[H(z) AY| > 1.
Thus,

[H'(z) ¢ Y] < |H(z)AY|

which, taking expectations, implies the theorem. m

In particular, this means that AdaBoost.MH can be applied to single-label multiclass
classification problems. The resulting bound on the training error of the final hypothesis
H*' is at most

k]] 2 (18)
t
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where Z; is as in Eq. (12). In fact, the results of Section 8 will imply a better bound of

g 1:[ Z,. (19)

Moreover, the leading constant k/2 can be improved somewhat by assuming without loss
of generality that, prior to examining any of the data, a Oth weak hypothesis is chosen,
namely ho = —1. For this weak hypothesis, ro = (k — 2)/k and Z, is minimized by
setting ap = % In(k — 1) which gives Zy = 2vk —1/k. Plugging into the bound of
Eq. (19), we therefore get an improved bound of

k T T
§HZt:\/k—1HZt.
t=0 t=1

This hack is equivalent to modifying the algorithm of Figure 2 only in the manner in which
D, is initialized. Specifically, Dy should be chosen so that Dy (é,y;) = 1/(2m) (where
y; is the correct label for z;) and D (i,£) = 1/(2m(k—1)) for £ # y;. Note that H' is
unaffected.

8. Using Output Coding for Multiclass Problems

The method above maps a single-label problem into a multi-label problem in the simplest
and most obvious way, namely, by mapping each single-label observation (x, i) to a multi-
label observation (z, {y}). However, it may be more effective to use a more sophisticated
mapping. In general, we can define a one-to-one mapping A : Y — 2 which we can use
to map each observation (z, y) to (z, A(y)). Note that A maps to subsets of an unspecified
label set )’ which need not be the same as V. Let &' =|)'|.

It is desirable to choose A to be a function which maps different labels to sets which are
far from one another, say, in terms of their symmetric difference. This is essentially the
approach advocated by Dietterich and Bakiri (1995) in a somewhat different setting. They
suggested using error correcting codes which are designed to have exactly this property.
Alternatively, when &’ is not too small, we can expect to get a similar effect by choosing A
entirely at random (so that, for y € Y and £ € )', we include or do not include £ in A(y)
with equal probability). Once a function A has been chosen we can apply AdaBoost.MH
directly on the transformed training data (z;, A(y;)).

How then do we classify a new instance z? The most direct use of Dietterich and Bakiri’s
approach is to evaluate H on z to obtain a set H(x) C )'. We then choose the label y € Y
for which the mapped output code A(y) has the shortest Hamming distance to H(z). That
is, we choose

in |\(y) A H(z)|.
arggjnelg,ll (y) A H(z)|

A weakness of this approach is that it ignores the confidence with which each label was
included or not included in H(x). An alternative approach is to predict that label y which,
if it had been paired with z in the training set, would have caused (z,y) to be given the
smallest weight under the final distribution. In other words, we suggest predicting the label
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Given: (z1,y1),-- -, (Tm,Yym) Wherez; € X, y; € Y
amapping A : Y — 2Y

Run AdaBoost.MH on relabeled data: (1, A(y1)), .- -, (Zm, A(ym))
Get back final hypothesis H of form H(z,4) = sign(f(z,y"))
where f(xa yl) = Zatht(xa yl)

t
e Output modified final hypothesis:
(Variant1) H;(z) = arg m€1§}1 [A(y) A H(z)|
Yy

(Variant 2) Hy(x) =arggl€i§;yglexp(—>\(y)[y']f(w,y’)>

Figure 3. AdaBoost.MO: A multiclass version of AdaBoost based on output codes.

argmin >, exp(~=A)ly'] f(z,y)

yl ey’

where, as before, f(z,y') = Y, auhe(z,y').

We call this version of boosting using output codes AdaBoost.MO. Pseudocode is given
in Figure 3. The next theorem formalizes the intuitions above, giving a bound on training
error in terms of the quality of the code as measured by the minimum distance between
any pair of “code words.”

THEOREM 5 Assuming the notation of Figure 3 and Figure 2 (viewed as a subroutine), let

[A(41) A A(£2)].

P= £ ,5223}317532
When run with this choice of ), the training error of AdaBoost.MO is upper bounded by

T

for Variant 2.

Proof: We start with Variant 1. Suppose the modified output hypothesis H; for Variant 1
makes a mistake on some example (z,y). This means that for some £ # y,

|H(z) AXML)| < [H(z) A My)|



IMPROVED BOOSTING ALGORITHMS 19

which implies that

2|H(z) AXy)| > [H(z) AXy)| + [H(z) A
> |(H(2)AX(y)) A (H(z)AX(0))]
= |[A(y) A A0
2P

where the second inequality uses the fact that |A A B| < |A| + |B| for any sets A and B.
Thus, in case of an error, |H(z) A X(y)| > p/2. On the other hand, the Hamming error of
AdaBoost.MH on the training set is, by definition,

Z|H($i)A)\(yi)|

i=1

mk’

which is at most [, Z; by Theorem 3. Thus, if M is the number of training mistakes, then

Zm: H(x; A)\y,|<mkHZt

which implies the stated bound.
For Variant 2, suppose that H, makes an error on some example (x, y). Then for some

t#y
D e (MO f(z,y) < Y e (=Aw)ly'] f(z,y")- (20)

y/ ey’ yl ey’

l\DIb

Fixing z, y and ¢, let us define w(y) = exp (—=A(y)[v'] f(z,y")). Note that

exp (—AO'] f(z,4")) = { w(y') A= A0y

1/w(y') otherwise.
Thus, Eq. (20) implies that
dw) > 1wy
y'eS y'eS
where S = A(y)AX(€). This implies that
D wl) > w) >3 ) (wly)+1/wy) > 151> p.
y' ey’ y' €S y'es

The third inequality uses the fact that z + 1/2 > 2 for all z > 0. Thus, we have shown
that if a mistake occurs on (z, y) then

3 exp (AWl f(z,9") = p.

y/eyl

If M is the number of training errors under Variant 2, this means that
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pM <D N exp (=AWl f(zi,y") = mk' [ 20

i=1y' ey

where the equality uses the main argument of the proof of Theorem 1 combined with the
reduction to binary classification described just prior to Theorem 3. This immediately
implies the stated bound. m

If the code X is chosen at random (uniformly among all possible codes), then, for large
k', we expect p to approach (1/2 — o(1))k'. In this case, the leading coefficients in the
bounds of Theorem 5 approach 4 for Variant 1 and 2 for Variant 2, independent of the
number of classes & in the original label set ).

We can use Theorem 5 to improve the bound in Eq. (18) for AdaBoost.MH to that in
Eq. (19). We apply Theorem 5 to the code defined by A(y) = {y} forall y € Y. Clearly,
p = 2 in this case. Moreover, we claim that H! as defined in Eq. (17) produces identical
predictions to those generated by Variant 2 in AdaBoost.MO since

Y exp (AW flw,y) = e FoW) —eflew) 4 N e flm), (21)

y' ey y' €Y

Clearly, the minimum of Eq. (21) over y is attained when f(z,y) is maximized. Applying
Theorem 5 now gives the bound in Eq. (19).

9. Using Ranking Loss for Multiclass Problems

In Section 7, we looked at the problem of finding a hypothesis that exactly identifies the
labels associated with an instance. In this section, we consider a different variation of this
problem in which the goal is to find a hypothesis which ranks the labels with the hope that
the correct labels will receive the highest ranks. The approach described here is closely
related to one used by Freund et al. (1998) for using boosting for more general ranking
problems.

To be formal, we now seek a hypothesis of the form f : X x Y — R with the interpre-
tation that, for a given instance z, the labels in ) should be ordered according to f(z,-).
That is, a label ¢; is considered to be ranked higher than 45 if f(z,¢1) > f(z,£2). With
respect to an observation (z,Y"), we only care about the relative ordering of the crucial
pairs £o, £1 for which £y ¢ Y and £; € Y. We say that f misorders a crucial pair £, ¢; if
f(z,£1) < f(z, o) sothat f fails to rank £; above £y. Our goal is to find a function f with
a small number of misorderings so that the labels in Y are ranked above the labels not in
Y.

Our goal then is to minimize the expected fraction of crucial pairs which are misordered.
This quantity is called the ranking loss, and, with respect to a distribution D over observa-
tions, it is defined to be

E {(lo, 1) € (Y =Y) xY : f(z,l1) < f(z,40)}]
o MR |

We denote this measure rlossp( f). Note that we assume that Y is never empty nor equal
to all of ) for any observation since there is no ranking problem to be solved in this case.
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Given: (z1,Y1),---,(Tm,Ym) Wherez; € X, Y; C Y
Initialize D1 (4, 4o, £,) = { (1)/(7”' [Yi| - |V = Yi|) ifby ¢Y;and 4y €Y;

else.
Fort=1,...,T:
e Train weak learner using distribution Dj.
e Getweak hypothesis h; : X x Y = R.
e Choose a; € R.
e Update:

Dt(i,eo,fl) exp (%at(ht(mi,éo) — ht(mz,él)))

Dyy1(i, o, 4y) = 7,

where Z; is a normalization factor (chosen so that D;,, will be a distribution).

Output the final hypothesis:

T
f(@,6) =" athi(z,0).
t=1

21

Figure 4. AdaBoost.MR: A multiclass, multi-label version of AdaBoost based on ranking loss.

A version of AdaBoost for ranking loss called AdaBoost.MR is shown in Figure 4. We
now maintain a distribution D, over {1, ...,m}xY xY. This distribution is zero, however,
except on the relevant triples (4, £o, ¢1) for which £, ¢4 is a crucial pair relative to (z;,Y;).

Weak hypotheses have the form h; : X x Y — R. We think of these as providing a
ranking of labels as described above. The update rule is a bit new. Let ¢¢, ¢, be a crucial
pair relative to (z;,Y;) (recall that D, is zero in all other cases). Assuming momentar-
ily that a; > 0, this rule decreases the weight Dy (i, £o, 1) if h; gives a correct ranking

(he(zs, £1) > he(z4,40)), and increases this weight otherwise.
We can prove a theorem analogous to Theorem 1 for ranking loss:

THEOREM 6 Assuming the notation of Figure 4, the following bound holds for the ranking

loss of f on the training data:

Proof: The proof is very similar to that of Theorem 1.
Unraveling the update rule, we have that

D1 (i, bo, &) exp (3 (f (25, 4o) — f(z5,41)))
Ht Zy '

DT+1(Z.7£0761) =
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The ranking loss on the training set is

Z D (i, Lo, 61)[f (x4, £0) > f(i,41)]

100,01
< D Dalinbo, ) exp (5(F(wi bo) = f(i, 1))
i,00,€1
= Z DT+1(7:7€07£1)HZt:HZt'
i,00,€1 ¢ ¢

(Here, each of the sums is over all example indices ¢ and all pairs of labels in ) x ).) This
completes the theorem. =
So, as before, our goal on each round is to try to minimize

Z = Z D(i,Eo,El)eXp (%a(h(wi,fo) — h(.’L‘l,El)))
i,80,81

where, as usual, we omit ¢ subscripts. We can apply all of the methods described in pre-
vious sections. Starting with the exact methods for finding «, suppose we are given a hy-
pothesis k. Then we can make the appropriate modifications to the method of Section 3.2
to find a numerically.

Alternatively, in the special case that h has range {—1, +1}, we have that

L (h(ziybo) — h(@i, 0r)) € {~1,0,+1} .

Therefore, we can use the method of Section 3.3 to choose o exactly:

o=t (5t) (22)
where
Wy, = > D(i,ly, &1)[h(zi, bo) — h(z;, tr) = 20]. (23)
30,01
As before,
Z=Wo+2yW_W, (24)
in this case.

How can we find a weak hypothesis to minimize this expression? A simplest first case is
to try to find the best oblivious weak hypothesis. An interesting open problem then is, given
a distribution D, to find an oblivious hypothesis  : Y — {—1,+1} which minimizes Z
when defined as in Egs. (23) and (24). We suspect that this problem may be NP-complete
when the size of ) is not fixed.

We also do not know how to analytically find the best oblivious hypothesis when we
do not restrict the range of h, although numerical methods may be reasonable. Note that
finding the best oblivious hypothesis is the simplest case of the natural extension of the
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technique of Section 4.1 to ranking loss. Folding a/2 into h as in Section 4, the problem
isto find A : Y — R to minimize

zZ=Y" KZ D(i,eo,m) exp(h(to) — h(em] :

£o,61

This can be rewritten as
Z =" [w(to, &) exp(h(ly) — h(£1))] (25)

£o,61

where w(lp, £1) = >, D(i,4o,¢1). In Appendix A we show that expressions of the form
given by Eq. (25) are convex, and we discuss how to minimize such expressions. (To see
that the expression in Eq. (25) has the general form of Eq. (A.1), identify the w(¥o, £1)’s
with the w;’s in Eq. (A.1), and the h(£)’s with the a;’s.)

Since exact analytic solutions seem hard to come by for ranking loss, we next consider
approximations such as those in Section 3.1. Assuming weak hypotheses A with range in
[—1,+1], we can use the same approximation of Eq. (4) which yields

l—r 1+r
< a —a
z_(2)6+(2)e (26)
where
r= % Z D(i,go,gl)(h(ﬂfi,él) — h(xwﬂo)) (27)
i,£0,¢1

As before, the right hand side of Eq. (26) is minimized when
Oz:%ln(l_'—T) (28)

1—r

which gives

Z <1-—1r2,

Thus, a reasonable and more tractable goal for the weak learner is to try to maximize |r|.

Example. To find the oblivious weak hypothesis b : ) — {—1, 41} which maximizes r,
note that by rearranging sums,

r=> hOm()
£

where

w(6) = 1> (DG, €, 0) — D(i, L, 1)) .

i

Clearly, r is maximized if we set h(£) = sign(7(£)). ™

Note that, although we use this approximation to find the weak hypothesis, once the weak
hypothesis has been computed by the weak learner, we can use other methods to choose a
such as those outlined above.
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Given: (z1,Y1),---,(Tm,Ym) Wherez; € X,Y; C Y
Initialize v1 (i, £) = (m - |Y;| - |¥ = Y;|)~'/?
Fort=1,...,T:

e Train weak learner using distribution D, (as defined by Eq. (29))
e Getweak hypothesis h; : X x Y — R.
e Choose a; € R.
e Update:
i, 0 — Lo, Vi[O he (s, £
vera (i, €) = v (i, £) exp ( 3 Yi[(hi(z ))
VZ;
where
Z=3 KZ v (i, £) exp (éathm,a)) (Z v (i, £) exp (—éatht(mi,a))]
i 73% LeY;

Output the final hypothesis:

T
fa,0) = 3 achi(a, 0).

Figure 5. A more efficient version of AdaBoost.MR (Figure 4).

9.1. A more efficient implementation

The method described above may be time and space inefficient when there are many labels.
In particular, we naively need to maintain |Y;| - | — Y;| weights for each training example
(z:,Y;), and each weight must be updated on each round. Thus, the space complexity and
time-per-round complexity can be as bad as 6(mk?).

In fact, the same algorithm can be implemented using only O(mk) space and time per
round. By the nature of the updates, we will show that we only need to maintain weights v,

over {1,...,m} x Y. We will maintain the condition that if £, ¢; is a crucial pair relative
to (z;,Y;), then
Dt(i,go,fl) = Ut(i,fo) . vt(i,ﬁl) (29)

at all times. (Recall that D, is zero for all other triples (i, £, ¢1).)

The pseudocode for this implementation is shown in Figure 5. Eq. (29) can be proved by
induction. It clearly holds initially. Using our inductive hypothesis, it is straightforward to
expand the computation of Z; in Figure 5 to see that it is equivalent to the computation of
Zy in Figure 4. To show that Eq. (29) holds on round ¢ + 1, we have, for crucial pair £, ¢1:

Dy(i, Lo, £1) exp (g (hy(zi, bo) — he(z4,41)))

Dyy1(iy o, 1) = Z,
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ve(2, £o) exp (%atht(mi,ﬁo)) . ve(i, £1) exp (—%atht(a:i,ﬁl))
VZ VZ;

= wvgy1(d,lo) - veya (i, 41) -

Finally, note that all space requirements and all per-round computations are O(mk),
with the possible exception of the call to the weak learner. However, if we want the weak
learner to maximize |r| as in Eq. (27), then we also only need to pass mk weights to the
weak learner, all of which can be computed in O(mk) time. Omitting ¢ subscripts, we can
rewrite r as

r = % z D(i,éo,ﬁl)(h(mi,él)—h(mi,ﬁg))
i,00,01

=35> > (i lo)li, tr) (A(wi, £1)Yi[ta] + h(i, £o)Yi[Lo])

i £o@Yi,l1€Y;

= %Z |:Z <1}(i,£0) Z ’l)(i,&_)) Y;[@O] h(l’l,gg) +

i |togvi Gev;
> v e) Y olislo) | Yila] b(zs, 61)
01€Y; Lo @Y

> d(i, 0) Yi[€] (i, £) (30)

i,

where

(i, 0) = (i, 0) D w(i,l).

£:Y;[0]#Yi[€

All of the weights d(i,£) can be computed in O(mk) time by first computing the sums
which appear in this equation for the two possible cases that Y;[¢] is —1 or +1. Thus,
we only need to pass O(mk) weights to the weak learner in this case rather than the full
distribution D; of size O(mk?). Moreover, note that Eqg. (30) has exactly the same form
as Eq. (14) which means that, in this setting, the same weak learner can be used for either
Hamming loss or ranking loss.

9.2. Relation to one-error

As in Section 7.2, we can use the ranking loss method for minimizing one-error, and there-
fore also for single-label problems. Indeed, Freund and Schapire’s (1997) “pseudoloss”-
based algorithm AdaBoost.M2 is a special case of the use of ranking loss in which all data
are single-labeled, the weak learner attempts to maximize |r;| as in Eq. (27), and « is set
as in Eq. (28).

As before, the natural prediction rule is

H'(2) = argmax 3 f(z,),
t
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in other words, to choose the highest ranked label for instance x. We can show:

THEOREM 7 With respect to any distribution D over observations (z,Y") where Y is nei-
ther empty nor equal to ),

one-errp(H') < (k — 1) rlossp(f).
Proof: Suppose H!(z) ¢ Y. Then, with respect to f and observation (z,Y"), misorderings

occur for all pairs ¢; € Y and £ = H'(x). Thus,

{(lo,6) €@ =Y) XY fl@, ) < flato)}] o 1 1
VY=Y BRI

Taking expectations gives

1

mE(z,Y)ND [ [H'(z) ¢ Y] ] < rlossp(f)

which proves the theorem. =

10. Experiments

In this section, we describe a few experiments that we ran on some of the boosting algo-
rithms described in this paper. The first set of experiments compares the algorithms on a
set of learning benchmark problems from the UCI repository. The second experiment does
a comparison on a large text categorization task. More details of our text-categorization
experiments appear in a companion paper (Schapire & Singer, to appear).

For multiclass problems, we compared three of the boosting algorithms:

Discrete AdaBoost.MH: In this version of AdaBoost.MH, we require that weak hypothe-
ses have range {—1, +1}. As described in Section 7, we set a; as in Eq. (13). The goal
of the weak learner in this case is to maximize |r;| as defined in Eq. (14).

Real AdaBoost.MH: In this version of AdaBoost.MH, we do not restrict the range of
the weak hypotheses. Since all our experiments involve domain-partitioning weak
hypotheses, we can set the confidence-ratings as in Section 7.1 (thereby eliminating
the need to choose ;). The goal of the weak learner in this case is to minimize Z;
as defined in Eq. (16). We also smoothed the predictions as in Sec. 4.2 using ¢ =
1/(2mk).

Discrete AdaBoost.MR: In this version of AdaBoost.MR, we require that weak hypothe-
ses have range {—1,+1}. We use the approximation of Z; given in Eq. (26) and
therefore set «; as in Eq. (28) with a corresponding goal for the weak learner of maxi-
mizing |r;| as defined in Eq. (27). Note that, in the single-label case, this algorithm is
identical to Freund and Schapire’s (1997) AdaBoost.M2 algorithm.
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Figure 6. Comparison of discrete AdaBoost.MH and discrete AdaBoost.MR on 11 multiclass benchmark prob-
lems from the UCI repository. Each point in each scatterplot shows the error rate of the two competing algorithms
on a single benchmark. Top and bottom rows give training and test errors, respectively, for 10, 100 and 1000
rounds of boosting. (However, on one benchmark dataset, the error rates fell outside the given range when only
10 rounds of boosting were used.)
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Figure 7. Comparison of discrete and real AdaBoost.MH on 26 binary and multiclass benchmark problems from
the UCI repository. (See caption for Figure 6.)
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We used these algorithms for two-class and multiclass problems alike. Note, however,
that discrete AdaBoost.MR and discrete AdaBoost.MH are equivalent algorithms for two-
class problems.

We compared the three algorithms on a collection of benchmark problems available from
the repository at University of California at Irvine (Merz & Murphy, 1998). We used
the same experimental set-up as Freund and Schapire (1996). Namely, if a test set was
already provided, experiments were run 20 times and the results averaged (since some of
the learning algorithms may be randomized). If no test set was provided, then 10-fold cross
validation was used and rerun 10 times for a total of 100 runs of each algorithm. We tested
on the same set of benchmarks, except that we dropped the “vowel” dataset. Each version
of AdaBoost was run for 1000 rounds.

We used the simplest of the weak learners tested by Freund and Schapire (1996). This
weak learner finds a weak hypothesis which makes its prediction based on the result of a
single test comparing one of the attributes to one of its possible values. For discrete at-
tributes, equality is tested; for continuous attributes, a threshold value is compared. Such
a hypothesis can be viewed as a one-level decision tree (sometimes called a “decision
stump”). The best hypothesis of this form which optimizes the appropriate learning crite-
rion (as listed above) can always be found by a direct and efficient search using the methods
described in this paper.

Figure 6 compares the relative performance of Freund and Schapire’s AdaBoost.M2 al-
gorithm (here called “discrete AdaBoost.MR”) to the new algorithm, discrete AdaBoost.MH.
Each point in each scatterplot gives the (averaged) error rates of the two methods for a sin-
gle benchmark problem; that is, the z-coordinate of a point gives the error rate for discrete
AdaBoost.MR, and the y-coordinate gives the error rate for discrete AdaBoost.MH. (Since
the two methods are equivalent for two-class problems, we only give results for the multi-
class benchmarks.) We have provided scatterplots for 10, 100 and 1000 rounds of boosting,
and for test and train error rates. It seems rather clear from these figures that the two meth-
ods are generally quite evenly matched with a possible slight advantage to AdaBoost.MH.
Thus, for these problems, the Hamming loss methodology gives comparable results to Fre-
und and Schapire’s method, but has the advantage of being conceptually simpler.

Next, we assess the value of using weak hypotheses which give confidence-rated pre-
dictions. Figure 7 shows similar scatterplots comparing real AdaBoost.MH and discrete
AdaBoost.MH. These scatterplots show that the real version (with confidences) is overall
more effective at driving down the training error, and also has an advantage on the test
error rate, especially for a relatively small number of rounds. By 1000 rounds, however,
these differences largely disappear.

In Figures 8 and 9, we give more details on the behavior of the different versions of Ada-
Boost. In Figure 8, we compare discrete and real AdaBoost.MH on 16 different problems
from the UCI repository. For each problem we plot for each method its training and test
error as a function of the number of rounds of boosting. Similarly, in Figure 8 we com-
pare discrete AdaBoost.MR, discrete AdaBoost.MH, and real AdaBoost.MH on multiclass
problems.

After examining the behavior of the various error curves, the potential for improvement
of AdaBoost with real-valued predictions seems to be greatest on larger problems. The
most noticeable case is the “letter-recognition” task, the largest UCI problem in our suite.
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Figure 10. Comparison of the training (left) and test (right) error using three boosting methods on a six-class text
classification problem from the TREC-AP collection.

This is a 26-class problem with 16, 000 training examples and 4, 000 test examples. For this
problem, the training error after 100 rounds is 32.2% for discrete AdaBoost.MR, 28.0%
for discrete AdaBoost.MH, and 19.5% for real AdaBoost.MH. The test error rates after
100 rounds are 34.1%, 30.4% and 22.3%, respectively. By 1,000 rounds, this gap in test
error has narrowed somewhat to 19.7%, 17.6% and 16.4%.

Finally, we give results for a large text-categorization problem. More details of our
text-categorization experiments are described in a companion paper (Schapire & Singer,
to appear). In this problem, there are six classes: DOMESTIC, ENTERTAINMENT, FINAN-
CIAL, INTERNATIONAL, POLITICAL, WASHINGTON. The goal is to assign a document to
one, and only one, of the above classes. We use the same weak learner as above, appropri-
ately modified for text; specifically, the weak hypotheses make their predictions based on
tests that check for the presence or absence of a phrase in a document. There are 142,727
training documents and 66,973 test documents.

In Figure 10, we compare the performance of discrete AdaBoost.MR, discrete Ada-
Boost.MH and real AdaBoost.MH. The figure shows the training and test error as a function
of number of rounds. The z-axis shows the number of rounds (using a logarithmic scale),
and the y-axis the training and test error. Real AdaBoost.MH dramatically outperforms the
other two methods, a behavior that seems to be typical on large text-categorization tasks.
For example, to reach a test error of 40%, discrete AdaBoost.MH takes 16,938 rounds, and
discrete AdaBoost.MR takes 33,347 rounds. In comparison, real AdaBoost.MH takes only
268 rounds, more than a sixty-fold speed-up over the best of the other two methods!

As happened in this example, discrete AdaBoost.MH seems to consistently outperform
discrete AdaBoost.MR on similar problems. However, this might be partially due to the
inferior choice of a; using the approximation leading to Eq. (28) rather than the exact
method which gives the choice of «; in Eq. (22).

11. Concluding Remarks

In this paper, we have described several improvements to Freund and Schapire’s AdaBoost
algorithm. In the new framework, weak hypotheses may assign confidences to each of their
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predictions. We described several generalizations for multiclass problems. The experi-
mental results with the improved boosting algorithms show that dramatic improvements in
training error are possible when a fairly large amount of data is available. However, on
small and noisy datasets, the rapid decrease of training error is often accompanied with
overfitting which sometimes results in rather poor generalization error. A very important
research goal is thus to control, either directly or indirectly, the complexity of the strong
hypotheses constructed by boosting.

Several applications can make use of the improved boosting algorithms. We have imple-
mented a system called BoosTexter for multiclass multi-label text and speech categoriza-
tion and performed an extensive set of experiments with this system (Schapire & Singer,
to appear). We have also used the new boosting framework for devising efficient ranking
algorithms (Freund et al., 1998).

There are other domains that may make use of the new framework for boosting. For
instance, it might be possible to train non-linear classifiers, such as neural networks using
Z as the objective function. We have also mentioned several open problems such as finding
an oblivious hypothesis into {—1, +1} which minimizes Z in AdaBoost.MR.

Finally, there seem to be interesting connections between boosting and other models and
their learning algorithms such as generalized additive models (Friedman et al., 1998) and
maximum entropy methods (Csiszar & Tusnady, 1984) which form a new and exciting
research arena.

Acknowledgments

We would like to thank Yoav Freund and Raj lyer for many helpful discussions. Thanks
also to Peter Bartlett for showing us the bound on generalization error in Section 5 using
pseudodimension, and to Roland Freund and Tommi Jaakkola for useful comments on
numerical methods.

References

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural net-
works: the size of the weights is more important than the size of the network. IEEE
Transactions on Information Theory, 44(2), 525-536.

Bauer, E., & Kohavi, R. (to appear). An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning.

Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization?. Neural
Computation, 1(1), 151-160.

Blum, A. (1997). Empirical support for winnow and weighted-majority based algorithms:
results on a calendar scheduling domain. Machine Learning, 26, 5-23.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801-849.



34 R. E. SCHAPIRE AND Y. SINGER

Csiszar, |., & Tusnady, G. (1984). Information geometry and alternaning minimization
procedures. Statistics and Decisions, Supplement Issue, 1, 205-237.

Dietterich, T. G. (to appear). An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.

Drucker, H., & Cortes, C. (1996). Boosting decision trees. In Advances in Neural Infor-
mation Processing Systems 8, pp. 479-485.

Fletcher, R. (1987). Practical Methods of Optimization (Second edition). John Wiley.

Freund, Y., lyer, R., Schapire, R. E., & Singer, Y. (1998). An efficient boosting algorithm
for combining preferences. In Machine Learning: Proceedings of the Fifteenth In-
ternational Conference.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Ma-
chine Learning: Proceedings of the Thirteenth International Conference, pp. 148-
156.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences, 55(1),
119-139.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). Using and combining
predictors that specialize. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing, pp. 334-343.

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical
view of boosting. Technical Report.

Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Information and Computation, 100(1), 78-150.

Haussler, D., & Long, P. M. (1995). A generalization of Sauer’s lemma. Journal of Com-
binatorial Theory, Series A, 71(2), 219-240.

Kearns, M., & Mansour, Y. (1996). On the boosting ability of top-down decision tree
learning algorithms. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing.

Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In
Proceedings of the Fourteenth National Conference on Atrtificial Intelligence, pp.
546-551.

Margineantu, D. D., & Dietterich, T. G. (1997). Pruning adaptive boosting. In Machine
Learning: Proceedings of the Fourteenth International Conference, pp. 211-218.



IMPROVED BOOSTING ALGORITHMS 35

Merz, C. J., & Murphy, P. M. (1998). UCI repository of machine learning databases..
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 725-730.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems. In
Machine Learning: Proceedings of the Fourteenth International Conference, pp.
313-321.

Schapire, R. E., Freund, Y., Bartlett, P.,, & Lee, W. S. (1998). Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5),
1651-1686.

Schapire, R. E., & Singer, Y. (to appear). BoosTexter: A boosting-based system for text
categorization. Machine Learning.

Schwenk, H., & Bengio, Y. (1998). Training methods for adaptive boosting of neural
networks. In Advances in Neural Information Processing Systems 10, pp. 647-653.

Appendix A
Properties of Z

In this appendix, we show that the function defined by Eq. (3) is a convex function in the
parameters ay, . . ., an and describe a numerical procedure based on Newton’s method to
find the parameters which minimize it.

To simplify notation, let u;; = —y;g;(x;). We will analyze the following slightly more
general form of Eq. (3)

m N
Zwi exp (Z ajuij) , (w; > O,sz’ =1). (A1)
i=1 j=1 i

Note that in all cases discussed in this paper Z is of the form given by Eq. (A.1). We
therefore refer for brevity to the function given by Eq. (A.1) as Z. The first and second
order derivatives of Z with respectto ay,...,an are

87 m N
VkZ = a— Zwi exp Zajuij Uik (A2)
k i=1 j=1

) 27 e N
vklZ = % = Zwi exp Zajuij UipUj] - (A3)
i=1 j=1

Denoting by u} = (uj1, ..., u;n) We can rewrite V2Z as
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m N
V2Z=E w; exXp E a;U;j uu”
i=1 j=1

Now, for any vector x € R we have that,

m
xI'Vv2Zx = x* E w; eXp 5 a;Ui; uZTui X
m N
= E w; exp E AU XTllz'll;rX
i1 j=1

m N
= Zwiexp Zaju,-j (x-ui)2 >0.
=1 7j=1

Hence, V2 Z is positive semidefinite which implies that Z is convex with respectto ay, . . ., an
and has a unique minimum (with the exception of pathological cases).

To find the values of a, . .., a)y that minimize Z we can use iterative methods such as
Newton’s method. In short, for Newton’s method the new set of parameters is updated
from the current set as follows

a+a-—(V22) vzl (A.4)

where a” = (ay,...,an).
Let

1
v; = Zw,- €xp ;Ui s
Jj=1

and denote by

Eiw (0] = sz u; and Esz u sz u; u; .

i=1

Then, substituting the values for VZ and V2Z from Egs. (A.2) and (A.3) in Eq. (A.4), we
get that the Newton parameter update is

a<a-— (E,-NU [u?u,]) -t Eiw [Wi] -

Typically, the above update would result in a new set of parameters that attains a smaller
value of Z than the current set. However, such a decrease is not always guaranteed. Hence,
the above iteration should be augmented with a test on the value of Z and a line search in
the direction of (V2Z)_1 VZT in case of an increase in the value of Z. (For further
details, see for instance Fletcher (1987)).
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Appendix B

Bounding the Generalization Error

In this appendix, we prove a bound on the generalization error of the combined hypothesis
produced by AdaBoost in terms of the margins of the training examples. An outline of the
proof that we present here was communicated to us by Peter Bartlett. It uses techniques
developed by Bartlett (1998) and Schapire et al. (1998).

Let H be a set of real-valued functions on domain X. We let co(#) denote the convex
hull of #, namely,

co(H) = {f:mn—)Zahh(a:) | ap ZO,Zah = 1}

where it is understood that each of the sums above are over the finite subset of hypotheses
in 4 for which o, > 0. We assume here that the weights on the hypotheses are nonneg-
ative. The result can be generalized to handle negative weights simply by adding to # all
hypotheses —h for h € H.

The main result of this appendix is the theorem below. This theorem is identical to
Schapire et al.’s (1998) Theorem 2 except that we allow the weak hypotheses to be real-
valued rather than binary.

We use Pr(, .y~ [4] to denote the probability of the event A when the example (z,y)
is chosen according to D, and Pr(, ,)~s [4] to denote probability with respect to choos-
ing an example uniformly at random from the training set. When clear from context, we
abbreviate these by Prp [A] and Prg [A]. We use Ep [A] and Eg [A] to denote expected
value in a similar manner.

To prove the theorem, we will first need to define the notion of a sloppy cover. For a
class F of real-valued functions, a training set S of size m, and real numbers 8 > 0 and
€ > 0, we say that a function class Fisan e-sloppy g-cover of F with respect to S if, for

all f in F, there exists f in Z with Pr,g [| f@) - f(2)| > 0] < e. Let N'(F,6,e,m)
denote the maximum, over all training sets .S of size m, of the size of the smallest e-sloppy
#-cover of F with respectto S.

THEOREM 8 Let D be a distribution over X x {—1,+1}, and let S be a sample of m
examples chosen independently at random according to D. Suppose the weak-hypothesis
space H of [—1, +1]-valued functions has pseudodimension d, and let & > 0. Assume that
m > d > 1. Then with probability at least 1 — § over the random choice of the training set
S, every weighted average function f € co(# ) satisfies the following generalization-error
bound for all § > 0:

31~

2 1/2
Pip [y (x) < 0] < Prs yf(a) < 6] + O < (D r0ga/0)) ) .
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Proof: Using techniques from Bartlett (1998), Schapire et al. (1998, Theorem 4) give a
theorem which states that, for e > 0 and § > 0, the probability over the random choice of
training set S that there exists any function f € co(#) for which

Prp [yf(x) < 0] > Prs[yf(z) < 0] +¢
is at most

2N (co(H),0/2, /8, 2m)ec ™/32 (B.1)
We prove Theorem 8 by applying this result. To do so, we need to construct sloppy covers

for co(H).
Haussler and Long (1995, Lemma 13) prove that

vouosm <32 (7) 5] < (5)"

Fix any set S C X of size m. Then this result meansAthatAthere exists H C H of
cardinality (em/(8d))? such that for all b € H there exists h € H such that

Vz € S :|h(z) — h(z)| < 9. (B.2)

Now let

N
o 1 N
CNz{f:mr—)NE_lhi(mHhiEH}

be the set of unweighted averages of N elements in 7. We will show that Cx is a sloppy
cover of co(H).
Let f € co(#). Then we can write

f(@) =Y ajhy(x)
J
wherea; > 0and }°; o = 1. Let
fa) =) ajh(a)
J
where ilj € H is chosen so that h; and ﬁj satisfy Eq. (B.2). Then forall z € S,

£@) = @) = | ay(hy(z) - hy(z)

A
Q
AN
>
.
~~
8
g
|
>
~
~~
&

IN
S

(B.3)
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Next, let us define a Qistributipn Q over functions in éN in which a function g € éN is
selected by choosing A1, ..., hx independently at random according to the distribution
over ‘H defined by the ¢ coefficients, and then setting g = (l/N)Zfil h;. Note that, for

fixed z, f(z) = E;~0 [9(x)]. We therefore can use Chernoff bounds to show that
Pryno [|f(2) = g(@)] > 6] < 267N/,
Thus,
Fy~o [Pr(syms [|f(2) = g(2)] > 6] ]
= Begms [Promo [I£(2) - g(@)] > 6] | <2e7 N2
Therefore, there exists g € éN such that
Pra s [|f(@) = g(@)| > 0] < 2e NP2,

Combined with Eg. (B.3), this means that Cyisa 2e—N92/2—sIoppy 26-cover of co(H).
Since |Cn| < |H|™, we have thus shown that

—N62/2 em\ N
N(co(H),20,2e ,m) < (Hd) .

Setting N = (32/6?) In(16/¢), this implies that Eq. (B.1) is at most

(32d/6%) In(16/¢)
8em 2 .
2 [ == —€ m/32. B4
(%) e B.4)
Let
_ 1 (1R2/0) | 2, (Bem) (@) v (B.5)
€= sm | mé? d d ‘ '

Then the logarithm of Eq. (B.4) is
16d 8em In(2/6) 2d 8em em
ln2_9_21n<0d)ln< sm +ma2ln< d )111(7))
16d 8em em

16d 8em em 8em mé?

< Iné.

IN

For the first inequality, we used the fact that In(8em /d) > In(em/d) > 1. For the second
inequality, note that

In Se_m In m_92
0d 2d
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is increasing as a function of 8. Therefore, since 8 < 1, it is upper bounded by

8em m 8em em
m(irynﬁﬁfh(ir)mﬂz)
Thus, for the choice of e given in Eq. (B.5), the bound in Eqg. (B.4) is at most 4.
We have thus proved the bound of the theorem for a single given choice of 8§ > 0 with
high probability. We next prove that with high probability, the bound holds simultane-

ously for all 8 > 0. Let €(6, §) be the choice of e given in Eq. (B.5), regarding the other
parameters as fixed. We have shown that, for all & > 0, the probability that

Prp [yf(z) < 0] > Prg [yf(x) < 0] + €(6,6) (B.6)

isat most . Let ® = {1,1/2,1/4,...}. By the union bound, this implies that, with
probability at least 1 — 4,

Prp [yf(z) < 0] < Prs [yf(z) < 6] + (9, 56/2) (B.7)

for all # € ©. This is because, for fixed § € ©, Eqg. (B.7) holds with probability 1 — 66/2.
Therefore, the probability that it fails to hold for any § € © isat most } , o 66/2 = 4.

Assume we are in the high probability case that Eq. (B.7) holds for all # € ©. Then
given any € > 0, choose 6’ € © such that §/2 < ¢’ < 6. We have

Prp [yf(z) <0] < Prs[yf(z) < 6] +e(¢',00'/2)
Prsyf(z) < 6] +€(6/2,06/4).

IAIA

Since

9 1/2
€(6/2,80/4) = O ( (dlogaigm/d) +1og(1/6)> ) ;

3i-

this completes the proof. =



