
A decision�theoretic generalization of on�line learning

and an application to boosting�

Yoav Freund Robert E� Schapire

AT�T Labs
��� Park Avenue

Florham Park� NJ �����
fyoav� schapireg	research
att
com

December ��� ����

Abstract

In the �rst part of the paper we consider the problem of dynamically apportioning
resources among a set of options in a worst�case on�line framework� The model we study
can be interpreted as a broad� abstract extension of the well�studied on�line prediction
model to a general decision�theoretic setting� We show that the multiplicative weight�
update rule of Littlestone and Warmuth ���� can be adapted to this model yielding bounds
that are slightly weaker in some cases� but applicable to a considerably more general class
of learning problems� We show how the resulting learning algorithm can be applied to a
variety of problems� including gambling� multiple�outcome prediction� repeated games and
prediction of points in Rn� In the second part of the paper we apply the multiplicative
weight�update technique to derive a new boosting algorithm� This boosting algorithm does
not require any prior knowledge about the performance of the weak learning algorithm�
We also study generalizations of the new boosting algorithm to the problem of learning
functions whose range� rather than being binary� is an arbitrary �nite set or a bounded
segment of the real line�

� Introduction

A gambler� frustrated by persistent horse�racing losses and envious of his friends� winnings�
decides to allow a group of his fellow gamblers to make bets on his behalf
 He decides he will
wager a
xed sum of money in every race� but that he will apportion his money among his
friends based on how well they are doing
 Certainly� if he knew psychically ahead of time which
of his friends would win the most� he would naturally have that friend handle all his wagers

Lacking such clairvoyance� however� he attempts to allocate each race�s wager in such a way
that his total winnings for the season will be reasonably close to what he would have won had
he bet everything with the luckiest of his friends

In this paper� we describe a simple algorithm for solving such dynamic allocation problems�
and we show that our solution can be applied to a great assortment of learning problems

�This paper appeared in Journal of Computer and System Sciences� �������������� ���	
 An extended abstract
of this work appeared in the Proceedings of the Second European Conference on Computational Learning Theory�
Barcelona� March� ����

�

Perhaps the most surprising of these applications is the derivation of a new algorithm for
�boosting�� i
e
� for converting a �weak� PAC learning algorithm that performs just slightly
better than random guessing into one with arbitrarily high accuracy

We formalize our on�line allocation model as follows
 The allocation agent A has N options
or strategies to choose from� we number these using the integers �� � � � � N
 At each time step
t � �� �� � � � � T � the allocator A decides on a distribution pt over the strategies� that is pti � � is
the amount allocated to strategy i� and

PN
i�� p

t
i � �
 Each strategy i then su�ers some loss �ti

which is determined by the �possibly adversarial� �environment
� The loss su�ered by A is thenPN
i�� p

t
i�
t
i � pt � �t� i
e
� the average loss of the strategies with respect to A�s chosen allocation

rule
 We call this loss function the mixture loss

In this paper� we always assume that the loss su�ered by any strategy is bounded so that�

without loss of generality� �ti � ��� ��
 Besides this condition� we make no assumptions about
the form of the loss vectors �

t� or about the manner in which they are generated� indeed� the
adversary�s choice for �t may even depend on the allocator�s chosen mixture pt

The goal of the algorithm A is to minimize its cumulative loss relative to the loss su�ered
by the best strategy
 That is� A attempts to minimize its net loss

LA �min
i
Li

where

LA �
TX
t��

pt � �t

is the total cumulative loss su�ered by algorithm A on the
rst T trials� and

Li �
TX
t��

�ti

is strategy i�s cumulative loss

In Section �� we show that Littlestone and Warmuth�s ���� �weighted majority� algorithm

can be generalized to handle this problem� and we prove a number of bounds on the net loss

For instance� one of our results shows that the net loss of our algorithm can be bounded by

O
�p

T lnN
�
or� put another way� that the average per trial net loss is decreasing at the rate

O
�p

�lnN��T
�

 Thus� as T increases� this di�erence decreases to zero

Our results for the on�line allocation model can be applied to a wide variety of learning
problems� as we describe in Section �
 In particular� we generalize the results of Littlestone
and Warmuth ���� and Cesa�Bianchi et al
 ��� for the problem of predicting a binary sequence
using the advice of a team of �experts
� Whereas these authors proved worst�case bounds for
making on�line randomized decisions over a binary decision and outcome space with a f�� �g�
valued discrete loss� we prove �slightly weaker� bounds that are applicable to any bounded loss
function over any decision and outcome spaces
 Our bounds express explicitly the rate at which
the loss of the learning algorithm approaches that of the best expert

Related generalizations of the expert prediction model were studied by Vovk ����� Kivinen
and Warmuth ����� and Haussler� Kivinen and Warmuth ����
 Like us� these authors focused
primarily on multiplicative weight�update algorithms
 Chung ��� also presented a generalization�
giving the problem a game�theoretic treatment

�

Boosting

Returning to the horse�racing story� suppose now that the gambler grows weary of choosing
among the experts and instead wishes to create a computer program that will accurately predict
the winner of a horse race based on the usual information �number of races recently won by
each horse� betting odds for each horse� etc
�
 To create such a program� he asks his favorite
expert to explain his betting strategy
 Not surprisingly� the expert is unable to articulate a
grand set of rules for selecting a horse
 On the other hand� when presented with the data for a
speci
c set of races� the expert has no trouble coming up with a �rule�of�thumb� for that set of
races �such as� �Bet on the horse that has recently won the most races� or �Bet on the horse
with the most favored odds��
 Although such a rule�of�thumb� by itself� is obviously very rough
and inaccurate� it is not unreasonable to expect it to provide predictions that are at least a
little bit better than random guessing
 Furthermore� by repeatedly asking the expert�s opinion
on di�erent collections of races� the gambler is able to extract many rules�of�thumb

In order to use these rules�of�thumb to maximum advantage� there are two problems faced
by the gambler� First� how should he choose the collections of races presented to the expert
so as to extract rules�of�thumb from the expert that will be the most useful� Second� once he
has collected many rules�of�thumb� how can they be combined into a single� highly accurate
prediction rule�

Boosting refers to this general problem of producing a very accurate prediction rule by
combining rough and moderately inaccurate rules�of�thumb
 In the second part of the paper�
we present and analyze a new boosting algorithm inspired by the methods we used for solving
the on�line allocation problem

Formally� boosting proceeds as follows� The booster is provided with a set of labeled training
examples �x�� y��� � � � � �xN � yN�� where yi is the label associated with instance xi� for instance�
in the horse�racing example� xi might be the observable data associated with a particular
horse race� and yi the outcome �winning horse� of that race
 On each round t � �� � � � � T � the
booster devises a distribution Dt over the set of examples� and requests �from an unspeci
ed
oracle� a weak hypothesis �or rule�of�thumb� ht with low error �t with respect to Dt �that
is� �t � Pri�Dt �ht�xi� �� yi��
 Thus� distribution Dt speci
es the relative importance of each
example for the current round
 After T rounds� the booster must combine the weak hypotheses
into a single prediction rule

Unlike the previous boosting algorithms of Freund ���� ��� and Schapire ����� the new
algorithm needs no prior knowledge of the accuracies of the weak hypotheses
 Rather� it adapts
to these accuracies and generates a weighted majority hypothesis in which the weight of each
weak hypothesis is a function of its accuracy
 For binary prediction problems� we prove in
Section � that the error of this
nal hypothesis �with respect to the given set of examples� is
bounded by exp���PT

t�� �
�
t � where �t � ���� �t is the error of the tth weak hypothesis
 Since

a hypothesis that makes entirely random guesses has error ���� �t measures the accuracy of
the tth weak hypothesis relative to random guessing
 Thus� this bound shows that if we can
consistently
nd weak hypotheses that are slightly better than random guessing� then the error
of the
nal hypothesis drops exponentially fast

Note that the bound on the accuracy of the
nal hypothesis improves when any of the
weak hypotheses is improved
 This is in contrast with previous boosting algorithms whose
performance bound depended only on the accuracy of the least accurate weak hypothesis
 At
the same time� if the weak hypotheses all have the same accuracy� the performance of the new
algorithm is very close to that achieved by the best of the known boosting algorithms

In Section �� we give two extensions of our boosting algorithm to multi�class prediction

�

Algorithm Hedge���
Parameters� � � ��� ��

initial weight vector w� � ��� ��N with
PN

i�� w
�
i � �

number of trials T

Do for t � �� �� � � � � T

�
 Choose allocation

pt �
wtPN
i�� w

t
i

�
 Receive loss vector �t � ��� ��N from environment

�
 Su�er loss pt � �t

�
 Set the new weights vector to be

wt��
i � wt

i�
�ti

Figure �� The on�line allocation algorithm

problems in which each example belongs to one of several possible classes �rather than just
two�
 We also give an extension to regression problems in which the goal is to estimate a
real�valued function

� The on�line allocation algorithm and its analysis

In this section� we present our algorithm� called Hedge���� for the on�line allocation problem

The algorithm and its analysis are direct generalizations of Littlestone and Warmuth�s weighted
majority algorithm ����

The pseudo�code for Hedge��� is shown in Figure �
 The algorithm maintains a weight
vector whose value at time t is denoted wt �

�
wt
�� � � � � w

t
N

�

 At all times� all weights will be

nonnegative
 All of the weights of the initial weight vector w� must be nonnegative and sum to
one� so that

PN
i�� w

�
i � �
 Besides these conditions� the initial weight vector may be arbitrary�

and may be viewed as a �prior� over the set of strategies
 Since our bounds are strongest for
those strategies receiving the greatest initial weight� we will want to choose the initial weights
so as to give the most weight to those strategies which we expect are most likely to perform the
best
 Naturally� if we have no reason to favor any of the strategies� we can set all of the initial
weights equally so that w�

i � ��N
 Note that the weights on future trials need not sum to one

Our algorithm allocates among the strategies using the current weight vector� after normal�

izing
 That is� at time t� Hedge��� chooses the distribution vector

pt �
wtPN
i�� w

t
i

� ���

After the loss vector �t has been received� the weight vector wt is updated using the multi�
plicative rule

wt��
i � wt

i � ��
t
i � ���

�

More generally� it can be shown that our analysis is applicable with only minor modi
cation to
an alternative update rule of the form

wt��
i � wt

i � U���ti�

where U� � ��� ��� ��� �� is any function� parameterized by � � ��� �� satisfying

�r � U��r� � �� ��� ��r

for all r � ��� ��

��� Analysis

The analysis of Hedge��� mimics directly that given by Littlestone and Warmuth ����
 The
main idea is to derive upper and lower bounds on

PN
i�� w

T��
i which� together� imply an upper

bound on the loss of the algorithm
 We begin with an upper bound

Lemma � For any sequence of loss vectors �
�� � � � � �T �

ln

�
NX
i��

wT��
i

�
� ���� ��LHedge����

Proof� By a convexity argument� it can be shown that

�r � �� ��� ��r ���

for � � � and r � ��� ��
 Combined with Equations ��� and ���� this implies
NX
i��

wt��
i �

NX
i��

wt
i�

�ti �
NX
i��

wt
i��� ��� ���ti� �

�
NX
i��

wt
i

�
��� ��� ��pt � �t�� ���

Applying repeatedly for t � �� � � � � T yields

NX
i��

wT��
i �

TY
t��

��� ��� ��pt � �t�

� exp

�
���� ��

TX
t��

pt � �t
�

since � � x � ex for all x
 The lemma follows immediately

Thus�

LHedge��� �
� ln

�PN
i�� w

T��
i

�
�� �

� ���

Note that� from Equation ����

wT��
i � w�

i

TY
t��

��
t
i � w�

i �
Li � ���

This is all that is needed to complete our analysis

�

Theorem � For any sequence of loss vectors �
�� � � � � �T � and for any i � f�� � � � � Ng� we have

LHedge��� �
� ln�w�

i �� Li ln �

�� �
� ���

More generally� for any nonempty set S � f�� � � � � Ng� we have

LHedge��� �
� ln�Pi�S w

�
i �� �ln ��maxi�S Li
�� �

� ���

Proof� We prove the more general statement ��� since Equation ��� follows in the special case
that S � fig

From Equation ����

NX
i��

wT��
i �

X
i�S

wT��
i �

X
i�S

w�
i �

Li � �maxi�S Li
X
i�S

w�
i �

The theorem now follows immediately from Equation ���

The simpler bound ��� states that Hedge��� does not perform �too much worse� than the

best strategy i for the sequence
 The di�erence in loss depends on our choice of � and on the
initial weight w�

i of each strategy
 If each weight is set equally so that w
�
i � ��N � then this

bound becomes

LHedge��� �
mini Li ln����� � lnN

�� �
� ���

Since it depends only logarithmically on N � this bound is reasonable even for a very large
number of strategies

The more complicated bound ��� is a generalization of the simpler bound that is especially
applicable when the number of strategies is in
nite
 Naturally� for uncountable collections of
strategies� the sum appearing in Equation ��� can be replaced by an integral� and the maximum
by a supremum

The bound given in Equation ��� can be written as

LHedge��� � cmin
i
Li � a lnN� ����

where c � ln����������� and a � �������
 Vovk ���� analyzes prediction algorithms that have
performance bounds of this form� and proves tight upper and lower bounds for the achievable
values of c and a
 Using Vovk�s results� we can show that the constants a and c achieved by
Hedge��� are optimal

Theorem � Let B be an algorithm for the on�line allocation problem with an arbitrary number
of strategies� Suppose that there exist positive real numbers a and c such that for any number
of strategies N and for any sequence of loss vectors �

�� � � � � �T

LB � cmin
i
Li � a lnN�

Then for all � � ��� ��� either

c � ln�����

�� �
or a � �

��� ��
�

The proof is given in the appendix

�

��� How to choose �

So far� we have analyzed Hedge��� for a given choice of �� and we have proved reasonable
bounds for any choice of �
 In practice� we will often want to choose � so as to maximally
exploit any prior knowledge we may have about the speci
c problem at hand

The following lemma will be helpful for choosing � using the bounds derived above

Lemma � Suppose � � L � �L and � � R � �R� Let � � g��L� �R� where g�z� � ���� �
p
��z��

Then �L ln � �R

�� �
� L�

q
��L �R� R�

Proof� �Sketch� It can be shown that � ln � � �� � �������� for � � ��� ��
 Applying this
approximation and the given choice of � yields the result

Lemma � can be applied to any of the bounds above since all of these bounds have the form
given in the lemma
 For example� suppose we have N strategies� and we also know a prior
bound �L on the loss of the best strategy
 Then� combining Equation ��� and Lemma �� we have

LHedge��� � min
i
Li �

q
��L lnN � lnN ����

for � � g��L� lnN�
 In general� if we know ahead of time the number of trials T � then we can
use �L � T as an upper bound on the cumulative loss of each strategy i

Dividing both sides of Equation ���� by T � we obtain an explicit bound on the rate at which
the average per�trial loss of Hedge��� approaches the average loss for the best strategy�

LHedge���

T
� min

i

Li
T
�

p
��L lnN

T
�
lnN

T
� ����

Since �L � T � this gives a worst case rate of convergence of O
�p

�lnN��T
�

 However� if �L is

close to zero� then the rate of convergence will be much faster� roughly� O��lnN��T �

Lemma � can also be applied to the other bounds given in Theorem � to obtain analogous

results

The bound given in Equation ���� can be improved in special cases in which the loss is a

function of a prediction and an outcome and this function is of a special form �see example �

below�
 However� for the general case� one cannot improve the square�root term
p
��L lnN � by

more than a constant factor
 This is a corollary of the lower bound given by Cesa�Bianchi et
al
 ����� Theorem �� who analyze an on�line prediction problem that can be seen as a special
case of the on�line allocation model

� Applications

The framework described up to this point is quite general and can be applied in a wide variety
of learning problems

Consider the following set�up used by Chung ���
 We are given a decision space �� a space
of outcomes �� and a bounded loss function 	 � � � � � ��� ��
 �Actually� our results require
only that 	 be bounded� but� by rescaling� we can assume that its range is ��� ��
� At every
time step t� the learning algorithm selects a decision
t � �� receives an outcome �t � �� and
su�ers loss 	�
t� �t�
 More generally� we may allow the learner to select a distribution Dt over

�

the space of decisions� in which case it su�ers the expected loss of a decision randomly selected
according to Dt� that is� its expected loss is �Dt� �t� where

 �D� �� � E��D�	�
� ����

To decide on distribution Dt� we assume that the learner has access to a set of N experts

At every time step t� expert i produces its own distribution E ti on �� and su�ers loss �E ti � �t�

The goal of the learner is to combine the distributions produced by the experts so as to
su�er expected loss �not much worse� than that of the best expert

The results of Section � provide a method for solving this problem
 Speci
cally� we run al�
gorithm Hedge���� treating each expert as a strategy
 At every time step� Hedge��� produces
a distribution pt on the set of experts which is used to construct the mixture distribution

Dt �
NX
i��

ptiE ti �

For any outcome �t� the loss su�ered by Hedge��� will then be

 �Dt� �t� �
NX
i��

pti �E ti � �t��

Thus� if we de
ne �ti � �E ti � �t� then the loss su�ered by the learner is pt � �t� i
e
� exactly the
mixture loss that was analyzed in Section �

Hence� the bounds of Section � can be applied to our current framework
 For instance�
applying Equation ����� we obtain the following�

Theorem � For any loss function 	� for any set of experts� and for any sequence of outcomes�
the expected loss of Hedge��� if used as described above is at most

TX
t��

 �Dt� �t� � min
i

TX
t��

 �E ti � �t� �
q
��L lnN � lnN

where �L � T is an assumed bound on the expected loss of the best expert� and � � g��L� lnN��

Example �� In the k�ary prediction problem� � � � � f�� �� � � � � kg� and 	�
� �� is � if
 �� �
and � otherwise
 In other words� the problem is to predict a sequence of letters over an alphabet
of size k
 The loss function 	 is � if a mistake was made� and � otherwise
 Thus� �D� �� is
the probability �with respect to D� of a prediction that disagrees with �
 The cumulative loss
of the learner� or of any expert� is therefore the expected number of mistakes on the entire
sequence
 So� in this case� Theorem � states that the expected number of mistakes of the
learning algorithm will exceed the expected number of mistakes of the best expert by at most

O
�p

T lnN
�
� or possibly much less if the loss of the best expert can be bounded ahead of time

Bounds of this type were previously proved in the binary case �k � �� by Littlestone and
Warmuth ���� using the same algorithm
 Their algorithm was later improved by Vovk ���� and
Cesa�Bianchi et al
 ���
 The main result of this section is a proof that such bounds can be shown
to hold for any bounded loss function

�

Example �� The loss function 	 may represent an arbitrary matrix game� such as �rock� paper�
scissors
� Here� � � � � fR� P� Sg� and the loss function is de
ned by the matrix�

�
R P S

R
�
� � �

 P � �
� �

S � � �
�

The decision
 represents the learner�s play� and the outcome � is the adversary�s play� then
	�
� ��� the learner�s loss� is � if the learner loses the round� � if it wins the round� and ��� if
the round is tied
 �For instance� 	�S� P� � � since �scissors cut paper
�� So the cumulative loss
of the learner �or an expert� is the expected number of losses in a series of rounds of game play
�counting ties as half a loss�
 Our results show then that� in repeated play� the expected number
of rounds lost by our algorithm will converge quickly to the expected number that would have
been lost by the best of the experts �for the particular sequence of moves that were actually
played by the adversary�

Example �� Suppose that � and � are
nite� and that 	 represents a game matrix as in the last
example
 Suppose further that we create one expert for each decision
 � � and that expert
always recommends playing

 In game�theoretic terminology such experts would be identi
ed
with pure strategies
 von Neumann�s classical min�max theorem states that for any
xed game
matrix there exists a distribution over the actions� also called a mixed strategy which achieves
the min�max optimal value of the expected loss against any adversarial strategy
 This min�max
value is also called the value of the game

Suppose that we use algorithm Hedge��� to choose distributions over the actions when
playing a matrix game repeatedly
 In this case� Theorem � implies that the gap between the
learner�s average per�round loss can never be much larger than that of the best pure strategy� and
that the maximal gap decreases to zero at the rate O���

p
T log j�j�
 However� the expected loss

of the optimal mixed strategy is a
xed convex combination of the losses of the pure strategies�
thus it can never be smaller than the loss of the best pure strategy for a particular sequence
of events
 We conclude that the expected per�trial loss of Hedge��� is upper bounded by the
value of the game plus O���

p
T log j�j�
 In other words� the algorithm can never perform much

worse that an algorithm that uses the optimal mixed strategy for the game� and it can be better
if the adversary does not play optimally
 Moreover� this holds true even if the learner knows
nothing at all about the game that is being played �so that 	 is unknown to the learner�� and
even if the adversarial opponent has complete knowledge both of the game that is being played
and the algorithm that is being used by the learner
 Algorithms with similar properties �but
weaker convergence bounds� were
rst devised by Blackwell ��� and Hannan ����
 For more
details see our related paper ����

Example �� Suppose that � � � is the unit ball in Rn� and that 	�
� �� � jj
 � �jj
 Thus�
the problem here is to predict the location of a point �� and the loss su�ered is the Euclidean
distance between the predicted point
 and the actual outcome �
 Theorem � can be applied
if probabilistic predictions are allowed
 However� in this setting it is more natural to require
that the learner and each expert predict a single point �rather than a measure on the space of
possible points�
 Essentially� this is the problem of �tracking� a sequence of points ��� � � � � �T

where the loss function measures the distance to the predicted point

�

To see how to handle the problem of
nding deterministic predictions� notice that the loss
function 	�
� �� is convex with respect to
�

jj�a
� � ��� a�
��� �jj � ajj
� � �jj� ��� a�jj
� � �jj ����

for any a � ��� �� and any � � �
 Thus we can do as follows
 At time t� the learner predicts with
the weighted average of the experts� predictions�
t �

PN
i�� p

t
i�
t
i where �

t
i � Rn is the prediction

of the ith expert at time t
 Regardless of the outcome �t� Equation ���� implies that

jj
t � �tjj �
NX
i��

ptijj�ti � �tjj �

Since Theorem � provides an upper bound on the right hand side of this inequality� we also
obtain upper bounds for the left hand side
 Thus� our results in this case give explicit bounds
on the total error �i
e
� distance between predicted and observed points� for the learner relative
to the best of a team of experts

In the one�dimensional case �n � ��� this case was previously analyzed by Littlestone and
Warmuth ����� and later improved upon by Kivinen and Warmuth ����

This result depends only on the convexity and the bounded range of the loss function 	�
� ��
with respect to

 Thus� it can also be applied� for example� to the squared�distance loss function
	�
� �� � jj
 � �jj�� as well as the log loss function 	�
� �� � � ln�
 � �� used by Cover ��� for
the design of �universal� investment portfolios
 �In this last case� � is the set of probability
vectors on n points� and � � ���B�B�n for some constant B
 �
�

In many of the cases listed above� superior algorithms or analyses are known
 Although
weaker in speci
c cases� it should be emphasized that our results are far more general� and can
be applied in settings that exhibit considerably less structure� such as the horse�racing example
described in the introduction

� Boosting

In this section we show how the algorithm presented in Section � for the on�line allocation
problem can be modi
ed to boost the performance of weak learning algorithms

We very brie!y review the PAC learning model �see� for instance� Kearns and Vazirani ����
for a more detailed description�
 Let X be a set called the domain
 A concept is a Boolean
function c � X � f�� �g
 A concept class C is a collection of concepts
 The learner has access
to an oracle which provides labeled examples of the form �x� c�x�� where x is chosen randomly
according to some
xed but unknown and arbitrary distribution D on the domain X � and
c � C is the target concept
 After some amount of time� the learner must output a hypothesis
h � X � ��� ��
 The value h�x� can be interpreted as a randomized prediction of the label of x
that is � with probability h�x� and � with probability ��h�x�
 �Although we assume here that
we have direct access to the bias of this prediction� our results can be extended to the case that
h is instead a random mapping into f�� �g
� The error of the hypothesis h is the expected value
Ex�D�jh�x� � c�x�j� where x is chosen according to D
 If h�x� is interpreted as a stochastic
prediction� then this is simply the probability of an incorrect prediction

A strong PAC�learning algorithm is an algorithm that� given ��

 � and access to random
examples� outputs with probability ��
 a hypothesis with error at most �
 Further� the running
time must be polynomial in ���� ��
 and other relevant parameters �namely� the �size� of the

��

examples received� and the �size� or �complexity� of the target concept�
 A weak PAC�learning
algorithm satis
es the same conditions but only for � � ����� where �
 � is either a constant�
or decreases as ��p where p is a polynomial in the relevant parameters
 We use WeakLearn

to denote a generic weak learning algorithm

Schapire ���� showed that any weak learning algorithm can be e"ciently transformed or

�boosted� into a strong learning algorithm
 Later� Freund ���� ��� presented the �boost�by�
majority� algorithm that is considerably more e"cient than Schapire�s
 Both algorithms work
by calling a given weak learning algorithm WeakLearn multiple times� each time presenting
it with a di�erent distribution over the domain X � and
nally combining all of the generated
hypotheses into a single hypothesis
 The intuitive idea is to alter the distribution over the
domain X in a way that increases the probability of the �harder� parts of the space� thus
forcing the weak learner to generate new hypotheses that make less mistakes on these parts

An important� practical de
ciency of the boost�by�majority algorithm is the requirement
that the bias � of the weak learning algorithm WeakLearn be known ahead of time
 Not
only is this worst�case bias usually unknown in practice� but the bias that can be achieved
by WeakLearn will typically vary considerably from one distribution to the next
 Unfor�
tunately� the boost�by�majority algorithm cannot take advantage of hypotheses computed by
WeakLearn with error signi
cantly smaller than the presumed worst�case bias of ���� �

In this section� we present a new boosting algorithm which was derived from the on�line
allocation algorithm of Section �
 This new algorithm is very nearly as e"cient as boost�by�
majority
 However� unlike boost�by�majority� the accuracy of the
nal hypothesis produced by
the new algorithm depends on the accuracy of all the hypotheses returned by WeakLearn�
and so is able to more fully exploit the power of the weak learning algorithm

Also� this new algorithm gives a clean method for handling real�valued hypotheses which
often are produced by neural networks and other learning algorithms

��� The new boosting algorithm

Although boosting has its roots in the PAC model� for the remainder of the paper� we adopt a
more general learning framework in which the learner receives examples �xi� yi� chosen randomly
according to some
xed but unknown distribution P on X � Y � where Y is a set of possible
labels
 As usual� the goal is to learn to predict the label y given an instance x

We start by describing our new boosting algorithm in the simplest case that the label set
Y consists of just two possible labels� Y � f�� �g
 In later sections� we give extensions of the
algorithm for more general label sets

Freund ���� describes two frameworks in which boosting can be applied� boosting by
ltering
and boosting by sampling
 In this paper� we use the boosting by sampling framework� which
is the natural framework for analyzing �batch� learning� i
e
� learning using a
xed training set
which is stored in the computer�s memory

We assume that a sequence of N training examples �labeled instances� �x�� y��� � � � � �xN � yN�
is drawn randomly fromX�Y according to distribution P
 We use boosting to
nd a hypothesis
hf which is consistent with most of the sample �i
e
� hf �xi� � yi for most � � i � N�
 In general�
a hypothesis which is accurate on the training set might not be accurate on examples outside
the training set� this problem is sometimes referred to as �over�
tting
� Often� however� over�

tting can be avoided by restricting the hypothesis to be simple
 We will come back to this
problem in Section �
�

The new boosting algorithm is described in Figure �
 The goal of the algorithm is to
nd

��

a
nal hypothesis with low error relative to a given distribution D over the training examples

Unlike the distribution P which is over X � Y and is set by �nature�� the distribution D
is only over the instances in the training set and is controlled by the learner
 Ordinarily�
this distribution will be set to be uniform so that D�i� � ��N
 The algorithm maintains a
set of weights wt over the training examples
 On iteration t a distribution pt is computed
by normalizing these weights
 This distribution is fed to the weak learner WeakLearn which
generates a hypothesis ht that �we hope� has small error with respect to the distribution
� Using
the new hypothesis ht� the boosting algorithm generates the next weight vector wt��� and the
process repeats
 After T such iterations� the
nal hypothesis hf is output
 The hypothesis hf
combines the outputs of the T weak hypotheses using a weighted majority vote

We call the algorithm AdaBoost because� unlike previous algorithms� it adjusts adaptively
to the errors of the weak hypotheses returned byWeakLearn
 IfWeakLearn is a PAC weak
learning algorithm in the sense de
ned above� then �t � ����� for all t �assuming the examples
have been generated appropriately with yi � c�xi� for some c � C�
 However� such a bound on
the error need not be known ahead of time
 Our results hold for any �t � ��� ��� and depend
only on the performance of the weak learner on those distributions that are actually generated
during the boosting process

The parameter �t is chosen as a function of �t and is used for updating the weight vector

The update rule reduces the probability assigned to those examples on which the hypothesis
makes a good prediction and increases the probability of the examples on which the prediction
is poor
�

Note thatAdaBoost� unlike boost�by�majority� combines the weak hypotheses by summing
their probabilistic predictions
 Drucker� Schapire and Simard ���� in experiments they performed
using boosting to improve the performance of a real�valued neural network� observed that sum�
ming the outcomes of the networks and then selecting the best prediction performs better than
selecting the best prediction of each network and then combining them with a majority rule
 It
is interesting that the new boosting algorithm�s
nal hypothesis uses the same combination rule
that was observed to be better in practice� but which previously lacked theoretical justi
cation

Since it was
rst introduced� several successful experiments have been conducted using
AdaBoost� including work by the authors ����� Drucker and Cortes ���� Jackson and Craven �����
Quinlan ����� and Breiman ���

��� Analysis

Comparing Figures � and �� there is an obvious similarity between the algorithms Hedge���
and AdaBoost
 This similarity re!ects a surprising �dual� relationship between the on�line
allocation model and the problem of boosting
 Put another way� there is a direct mapping
or reduction of the boosting problem to the on�line allocation problem
 In such a reduction�
one might naturally expect a correspondence relating the strategies to the weak hypotheses
and the trials �and associated loss vectors� to the examples in the training set
 However� the
reduction we have used is reversed� the �strategies� correspond to the examples� and the trials

�Some learning algorithms can be generalized to use a given distribution directly
 For instance� gradient based
algorithms can use the probability associated with each example to scale the update step size which is based
on the example
 If the algorithm cannot be generalized in this way� the training sample can be re�sampled to
generate a new set of training examples that is distributed according to the given distribution
 The computation
required to generate each re�sampled example takes O�logN� time

�Furthermore� if ht is Boolean �with range f�� �g�� then it can be shown that this update rule exactly removes
the advantage of the last hypothesis
 That is� the error of ht on distribution p

t�� is exactly ���

��

Algorithm AdaBoost
Input� sequence of N labeled examples h�x�� y��� � � � � �xN � yN�i

distribution D over the N examples
weak learning algorithm WeakLearn

integer T specifying number of iterations

Initialize the weight vector� w�
i � D�i� for i � �� � � � � N

Do for t � �� �� � � � � T

�
 Set

pt �
wtPN
i�� w

t
i

�
 Call WeakLearn� providing it with the distribution pt� get back a hypothesis ht � X �
��� ��

�
 Calculate the error of ht� �t �
PN

i�� p
t
ijht�xi�� yij

�
 Set �t � �t���� �t�

�
 Set the new weights vector to be

wt��
i � wt

i�
��jht�xi��yij
t

Output the hypothesis

hf �x� �

�
� if

PT
t��

�
log �

�t

�
ht�x� � �

�

PT
t�� log

�
�t

� otherwise
�

Figure �� The adaptive boosting algorithm

��

are associated with the weak hypotheses
 Another reversal is in the de
nition of the loss� in
Hedge��� the loss �ti is small if the ith strategy suggests a good action on the tth trial while
in AdaBoost the �loss� �ti � �� jht�xi� � yij appearing in the weight�update rule �Step �� is
small if the tth hypothesis suggests a bad prediction on the ith example
 The reason is that in
Hedge��� the weight associated with a strategy is increased if the strategy is successful while
in AdaBoost the weight associated with an example is increased if the example is �hard
�

The main technical di�erence between the two algorithms is that in AdaBoost the param�
eter � is no longer
xed ahead of time but rather changes at each iteration according to �t
 If we
are given ahead of time the information that �t � ����� for some �
 � and for all t � �� � � � � T �
then we could instead directly apply algorithm Hedge��� and its analysis as follows� Fix � to
be ���� and set �ti � ��jht�xi�� yij� and hf as in AdaBoost� but with equal weight assigned
to all T hypotheses
 Then pt � �t is exactly the accuracy of ht on distribution pt� which� by
assumption� is at least �����
 Also� letting S � fi � hf �xi� �� yig� it is straightforward to show
that if i � S then

Li
T
�
�

T

TX
t��

�ti � ��
�

T

TX
t��

jyi � ht�xi�j � ��
�����yi � �

T

TX
t��

ht�xi�

����� � ���

by hf �s de
nition� and since yi � f�� �g
 Thus� by Theorem ��

T � ���� � �� �
TX
t��

pt � �t � � ln�Pi�S D�i�� � �� � ����T���

�

since � ln��� � � ln��� �� � �� �� for � � ��� ����
 This implies that the error � �P
i�S D�i�

of hf is at most e
�T����

The boosting algorithm AdaBoost has two advantages over this direct application of
Hedge���
 First� by giving a more re
ned analysis and choice of �� we obtain a signi
cantly
superior bound on the error �
 Second� the algorithm does not require prior knowledge of the
accuracy of the hypotheses thatWeakLearn will generate
 Instead� it measures the accuracy
of ht at each iteration and sets its parameters accordingly
 The update factor �t decreases with
�t which causes the di�erence between the distributions p

t and pt�� to increase
 Decreasing �t
also increases the weight ln����t� which is associated with ht in the
nal hypothesis
 This makes
intuitive sense� more accurate hypotheses cause larger changes in the generated distributions
and have more in!uence on the outcome of the
nal hypothesis

We now give our analysis of the performance of AdaBoost
 Note that this theorem applies
also if� for some hypotheses� �t � ���

Theorem � Suppose the weak learning algorithm WeakLearn� when called by AdaBoost�
generates hypotheses with errors ��� � � � � �T �as de�ned in Step � of Figure ��	 Then the error
� � Pri�D �hf �xi� �� yi� of the �nal hypothesis hf output by AdaBoost is bounded above by

� � �T
TY
t��

q
�t��� �t�� ����

Proof� We adapt the main arguments from Lemma � and Theorem �
 We use pt and wt as
they are de
ned in Figure �

��

Similar to Equation ���� the update rule given in Step � in Figure � implies that

NX
i��

wt��
i �

NX
i��

wt
i�

��jht�xi��yij
t �

NX
i��

wt
i�������t���� jht�xi�� yij�� �

�
NX
i��

wt
i

�
��� ��� �t���� �t�� �

����
Combining this inequality over t � �� � � � � T � we get that

NX
i��

wT��
i �

TY
t��

��� ��� �t���� �t�� � ����

The
nal hypothesis hf � as de
ned in Figure �� makes a mistake on instance i only if

TY
t��

�
�jht�xi��yij
t �

�
TY
t��

�t

�����
����

�since yi � f�� �g�
 The
nal weight of any instance i is

wT��
i � D�i�

TY
t��

�
��jht�xi��yij
t � ����

Combining Equations ���� and ���� we can lower bound the sum of the
nal weights by the
sum of the
nal weights of the examples on which hf is incorrect�

NX
i��

wT��
i �

X
i�hf �xi���yi

wT��
i �

�
	 X
i�hf �xi���yi

D�i�

A� TY

t��

�t

����

� � �
�

TY
t��

�t

����

����

where � is the error of hf
 Combining Equations ���� and ����� we get that

� �
TY
t��

�� ��� �t���� �t�p
�t

� ����

As all the factors in the product are positive� we can minimize the right hand side by minimizing
each factor separately
 Setting the derivative of the tth factor to zero� we
nd that the choice
of �t which minimizes the right hand side is �t � �t��� � �t�
 Plugging this choice of �t into
Equation ���� we get Equation ����� completing the proof

The bound on the error given in Theorem �� can also be written in the form

� �
TY
t��

q
�� ���t � exp

�
�

TX
t��

KL���� jj ���� �t�

�
� exp

�
��

TX
t��

��t

�
����

where KL�a jj b� � a ln�a�b�����a� ln���� a����� b�� is the Kullback�Leibler divergence� and
where �t has been replaced by ���� �t
 In the case where the errors of all the hypotheses are
equal to ���� �� Equation ���� simpli
es to

� �
�
�� ���

�T��
� exp ��T �KL���� jj ���� ��� � exp

�
��T��

�
� ����

This is a form of the Cherno� bound for the probability that less than T�� coin !ips turn out
�heads� in T tosses of a random coin whose probability for �heads� is ��� � �
 This bound

��

has the same asymptotic behavior as the bound given for the boost�by�majority algorithm ����

From Equation ���� we get that the number of iterations of the boosting algorithm that is
su"cient to achieve error � of hf is

T �

�
�

KL���� jj ���� ��
ln
�

�

�
�
�
�

���
ln
�

�

�
� ����

Note� however� that when the errors of the hypotheses generated by WeakLearn are not
uniform� Theorem � implies that the
nal error depends on the error of all of the weak hypothe�
ses
 Previous bounds on the errors of boosting algorithms depended only on the maximal error
of the weakest hypothesis and ignored the advantage that can be gained from the hypotheses
whose errors are smaller
 This advantage seems to be very relevant to practical applications
of boosting� because there one expects the error of the learning algorithm to increase as the
distributions fed toWeakLearn shift more and more away from the target distribution

��� Generalization error

We now come back to discussing the error of the
nal hypothesis outside the training set

Theorem � guarantees that the error of hf on the sample is small� however� the quantity that
interests us is the generalization error of hf � which is the error of hf over the whole instance
space X � that is� �g � Pr�x�y��P �hf �x� �� y�
 In order to make �g close to the empirical error
#� on the training set� we have to restrict the choice of hf in some way
 One natural way of
doing this in the context of boosting is to restrict the weak learner to choose its hypotheses
from some simple class of functions and restrict T � the number of weak hypotheses that are
combined to make hf
 The choice of the class of weak hypotheses is speci
c to the learning
problem at hand and should re!ect our knowledge about the properties of the unknown concept

As for the choice of T � various general methods can be devised
 One popular method is to use
an upper bound on the VC�dimension of the concept class
 This method is sometimes called
�structural risk minimization
� See Vapnik�s book ���� for an extensive discussion of the theory
of structural risk minimization
 For our purposes� we quote Vapnik�s Theorem �
��

Theorem � �Vapnik	 Let H be a class of binary functions over some domain X� Let d be
the VC�dimension of H� Let P be a distribution over the pairs X � f�� �g� For h � H� de�ne
the �generalization	 error of h with respect to P to be

�g�h�
�
� Pr�x�y��P �h�x� �� y��

Let S � f�x�� y��� � � � � �xN � yN�g be a sample �training set	 of N independent random examples
drawn from X�f�� �g according to P� De�ne the empirical error of h with respect to the sample
S to be

#��h�
�
�
jfi � h�xi� �� yigj

N
�

Then� for any

 � we have that

Pr

���	h � H � j#��h�� �g�h�j
 �

vuutd
�
ln �N

d � �
�
� ln �

�

N

�
��� �

where the probability is computed with respect to the random choice of the sample S�

��

Let � � R� f�� �g be de
ned by

��x� �

�
� if x � �
� otherwise

and� for any class H of functions� let $T �H� be the class of all functions de
ned as a linear
threshold of T functions in H �

$T �H� �

�
�

�
TX
t��

atht � b

�
� b� a�� � � � � aT � R� h�� � � � � hT � H

�
�

Clearly� if all hypotheses generated by WeakLearn belong to some class H � then the
nal
hypothesis of AdaBoost� after T rounds of boosting� belongs to $T �H�
 Thus� the next
theorem provides an upper bound on the VC�dimension of the class of
nal hypotheses generated
by AdaBoost in terms of the weak hypothesis class

Theorem
 Let H be a class of binary functions of VC�dimension d � �� Then the VC�
dimension of $T �H� is at most ��d����T��� log��e�T ���� �where e is the base of the natural
logarithm�	

Therefore� if the hypotheses generated by WeakLearn are chosen from a class of VC�
dimension d � �� then the �nal hypotheses generated by AdaBoost after T iterations belong
to a class of VC�dimension at most ��d� ���T � �� log��e�T � ����

Proof� We use a result about the VC�dimension of computation networks proved by Baum
and Haussler ���
 We can view the
nal hypothesis output by AdaBoost as a function that is
computed by a two�layer feed�forward network where the computation units of the
rst layer
are the weak hypotheses and the computation unit of the second layer is the linear threshold
function which combines the weak hypotheses
 The VC�dimension of the set of linear threshold
functions over RT is T �� ����
 Thus the sum over all computation units of the VC�dimensions
of the classes of functions associated with each unit is Td��T ��� � �T ����d���
 Baum and
Haussler�s Theorem � ��� implies that the number of di�erent functions that can be realized
by h � $T �H� when the domain is restricted to a set of size m is at most ��T � ��em��T �
���d � ����T����d���
 If d � �� T � � and we set m � d��T � ���d� �� log��e�T � ���e� then
the number of realizable functions is smaller than �m which implies that the VC�dimension of
$T �H� is smaller than m

Following the guidelines of structural risk minimization we can do the following �assuming
we know a reasonable upper bound on the VC�dimension of the class of weak hypotheses�
 Let
hTf be the hypothesis generated by running AdaBoost for T iterations
 By combining the

observed empirical error of hTf with the bounds given in Theorems � and �� we can compute an

upper bound on the generalization error of hTf for all T
 We would then select the hypothesis

hTf that minimizes the guaranteed upper bound

While structural risk minimization is a mathematically sound method� the upper bounds on

�g that are generated in this way might be larger than the actual value and so the chosen number
of iterations T might be much smaller than the optimal value� leading to inferior performance
 A
simple alternative is to use �cross�validation� in which a fraction of the training set is left outside
the set used to generate hf as the so�called �validation� set
 The value of T is then chosen to
be the one for which the error of the
nal hypothesis on the validation set is minimized
 �For
an extensive analysis of the relations between di�erent methods for selecting model complexity
in learning� see Kearns et al
 ����
�

��

Some initial experiments using AdaBoost on real�world problems conducted by ourselves
and Drucker and Cortes ��� indicate that AdaBoost tends not to over�
t� on many problems�
even after hundreds of rounds of boosting� the generalization error continues to drop� or at least
does not increase

��� A Bayesian interpretation

The
nal hypothesis generated by AdaBoost is closely related to one suggested by a Bayesian
analysis
 As usual� we assume that examples �x� y� are being generated according to some
distribution P on X � f�� �g� all probabilities in this subsection are taken with respect to
P
 Suppose we are given a set of f�� �g�valued hypotheses h�� � � � � hT and that our goal is to
combine the predictions of these hypotheses in the optimal way
 Then� given an instance x and
the hypothesis predictions ht�x�� the Bayes optimal decision rule says that we should predict
the label with the highest likelihood� given the hypothesis values� i
e
� we should predict � if

Pr �y � � j h��x�� � � � � hT�x��
 Pr �y � � j h��x�� � � � � hT �x���

and otherwise we should predict �

This rule is especially easy to compute if we assume that the errors of the di�erent hypotheses

are independent of one another and of the target concept� that is� if we assume that the event
ht�x� �� y is conditionally independent of the actual label y and the predictions of all the other
hypotheses h��x�� � � � � ht���x�� ht���x�� � � � � hT �x�
 In this case� by applying Bayes rule� we can
rewrite the Bayes optimal decision rule in a particularly simple form in which we predict � if

Pr �y � ��
Y

t�ht�x���

�t
Y

t�ht�x���

��� �t�
 Pr �y � ��
Y

t�ht�x���

��� �t�
Y

t�ht�x���

�t�

and � otherwise
 Here �t � Pr �ht�x� �� y�
 We add to the set of hypotheses the trivial hypothesis
h� which always predicts the value �
 We can then replace Pr �y � �� by ��
 Taking the logarithm
of both sides in this inequality and rearranging the terms� we
nd that the Bayes optimal
decision rule is identical to the combination rule that is generated by AdaBoost

If the errors of the di�erent hypotheses are dependent� then the Bayes optimal decision
rule becomes much more complicated
 However� in practice� it is common to use the simple
rule described above even when there is no justi
cation for assuming independence
 �This is
sometimes called �naive Bayes
�� An interesting and more principled alternative to this practice
would be to use the algorithm AdaBoost to
nd a combination rule which� by Theorem �� has
a guaranteed non�trivial accuracy

��� Improving the error bound

We show in this section how the bound given in Theorem � can be improved by a factor of two

The main idea of this improvement is to replace the �hard� f�� �g�valued decision used by hf
by a �soft� threshold

To be more precise� let

r�xi� �

PT
t��

�
log �

�t

�
ht�xi�PT

t�� log
�
�t

be a weighted average of the weak hypotheses ht
 We will here consider
nal hypotheses of
the form hf �xi� � F �r�xi�� where F � ��� �� � ��� ��
 For the version of AdaBoost given in

��

Figure �� F �r� is the hard threshold that equals � if r � ��� and � otherwise
 In this section�
we will instead use soft threshold functions that take values in ��� ��
 As mentioned above� when
hf �xi� � ��� ��� we can interpret hf as a randomized hypothesis and hf �xi� as the probability
of predicting �
 Then the error Ei�D�jhf�xi� � yij� is simply the probability of an incorrect
prediction

Theorem � Let ��� � � � � �T be as in Theorem
� and let r�xi� be as de�ned above� Let the
modi�ed �nal hypothesis be de�ned by hf � F �r�xi�� where F satis�es the following for r � ��� ���

F ��� r� � �� F �r�� and F �r� � �

�

�
TY
t��

�t

�����r

�

Then the error � of hf is bounded above by

� � �T��
TY
t��

q
�t��� �t��

For instance� it can be shown that the sigmoid function F �r� �
�
� �

QT
t�� �

�r��
t

���
satis
es

the conditions of the theorem

Proof� By our assumptions on F � the error of hf is

� �
NX
i��

D�i� � jF �r�xi��� yij

�
NX
i��

D�i�F �jr�xi�� yij�

� �

�

NX
i��

�
D�i�

TY
t��

�
����jr�xi��yij
t

�
�

Since yi � f�� �g and by de
nition of r�xi�� this implies that

� � �

�

NX
i��

�
D�i�

TY
t��

�
����jht�xi��yij
t

�

�
�

�

�
NX
i��

wT��
i

�
TY
t��

�
����
t

� �

�

TY
t��

�
��� ��� �t���� �t���

����
t

�
�

The last two steps follow from Equations ���� and ����� respectively
 The theorem now follows
from our choice of �t

� Boosting for multi�class and regression problems

So far� we have restricted our attention to binary classi
cation problems in which the set of
labels Y contains only two elements
 In this section� we describe two possible extensions of

��

AdaBoost to the multi�class case in which Y is any
nite set of class labels
 We also give an
extension for a regression problem in which Y is a real bounded interval

We start with the multiple�label classi
cation problem
 Let Y � f�� �� � � � � kg be the set of
possible labels
 The boosting algorithms we present output hypotheses hf � X � Y � and the
error of the
nal hypothesis is measured in the usual way as the probability of an incorrect
prediction

The
rst extension of AdaBoost� which we call AdaBoost�M�� is the most direct
 The
weak learner generates hypotheses which assign to each instance one of the k possible labels

We require that each weak hypothesis have prediction error less than ��� �with respect to the
distribution on which it was trained�
 Provided this requirement can be met� we are able prove
that the error of the combined
nal hypothesis decreases exponentially� as in the binary case

Intuitively� however� this requirement on the performance of the weak learner is stronger than
might be desired
 In the binary case �k � ��� a random guess will be correct with probability
���� but when k
 �� the probability of a correct random prediction is only ��k � ���
 Thus�
our requirement that the accuracy of the weak hypothesis be greater than ��� is signi
cantly
stronger than simply requiring that the weak hypothesis perform better than random guessing

In fact� when the performance of the weak learner is measured only in terms of error rate�
this di"culty is unavoidable as is shown by the following informal example �also presented by
Schapire ������ Consider a learning problem where Y � f�� �� �g and suppose that it is �easy�
to predict whether the label is � but �hard� to predict whether the label is � or �
 Then a
hypothesis which predicts correctly whenever the label is � and otherwise guesses randomly
between � and � is guaranteed to be correct at least half of the time �signi
cantly beating
the ��� accuracy achieved by guessing entirely at random�
 On the other hand� boosting this
learner to an arbitrary accuracy is infeasible since we assumed that it is hard to distinguish ��
and ��labeled instances

As a more natural example of this problem� consider classi
cation of handwritten digits in
an OCR application
 It may be easy for the weak learner to tell that a particular image of a
��� is not a ��� but hard to tell for sure if it is a ��� or a ���
 Part of the problem here is
that� although the boosting algorithm can focus the attention of the weak learner on the harder
examples� it has no way of forcing the weak learner to discriminate between particular labels
that may be especially hard to distinguish

In our second version of multi�class boosting� we attempt to overcome this di"culty by
extending the communication between the boosting algorithm and the weak learner
 First�
we allow the weak learner to generate more expressive hypotheses whose output is a vector in
��� ��k� rather than a single label in Y
 Intuitively� the yth component of this vector represents
a �degree of belief� that the correct label is y
 The components with large values �close to ��
correspond to those labels considered to be plausible
 Likewise� labels considered implausible
are assigned a small value �near ��� and questionable labels may be assigned a value near ���

If several labels are considered plausible �or implausible�� then they all may be assigned large
�or small� values

While we give the weak learning algorithm more expressive power� we also place a more
complex requirement on the performance of the weak hypotheses
 Rather than using the usual
prediction error� we ask that the weak hypotheses do well with respect to a more sophisticated
error measure that we call the pseudo�loss
 This pseudo�loss varies from example to example�
and from one round to the next
 On each iteration� the pseudo�loss function is supplied to
the weak learner by the boosting algorithm� along with the distribution on the examples
 By
manipulating the pseudo�loss function� the boosting algorithm can focus the weak learner on

��

the labels that are hardest to discriminate
 The boosting algorithm AdaBoost�M�� described
in Section �
�� is based on these ideas and achieves boosting if each weak hypothesis has pseudo�
loss slightly better than random guessing �with respect to the pseudo�loss measure that was
supplied to the weak learner�

In addition to the two extensions described in this paper� we mention an alternative� stan�
dard approach which would be to convert the given multi�class problem into several binary
problems� and then to use boosting separately on each of the binary problems
 There are
several standard ways of making such a conversion� one of the most successful being the error�
correcting output coding approach advocated by Dietterich and Bakiri ���

Finally� in Section �
� we extend AdaBoost to boosting regression algorithms
 In this
case Y � ��� ��� and the error of a hypothesis is de
ned as E�x�y��P

�
�h�x�� y��

�

 We de�

scribe a boosting algorithm AdaBoost�R which� using methods similar to those used in
AdaBoost�M�� boosts the performance of a weak regression algorithm

��� First multi�class extension

In our
rst and most direct extension to the multi�class case� the goal of the weak learner is to
generate on round t a hypothesis ht � X � Y with low classi
cation error �t

�
� Pri�pt �ht�xi� �� yi�

Our extended boosting algorithm� called AdaBoost�M�� is shown in Figure �� and di�ers only
slightly from AdaBoost
 The main di�erence is in the replacement of the error jht�xi� � yij
for the binary case by ��ht�xi� �� yi�� where� for any predicate �� we de
ne ����� to be � if � holds
and � otherwise
 Also� the
nal hypothesis hf � for a given instance x� now outputs the label y
that maximizes the sum of the weights of the weak hypotheses predicting that label

In the case of binary classi
cation �k � ��� a weak hypothesis h with error signi
cantly
larger than ��� is of equal value to one with error signi
cantly less than ��� since h can be
replaced by � � h
 However� for k
 �� a hypothesis ht with error �t � ��� is useless to the
boosting algorithm
 If such a weak hypothesis is returned by the weak learner� our algorithm
simply halts� using only the weak hypotheses that were already computed

Theorem �
 Suppose the weak learning algorithmWeakLearn� when called byAdaBoost�M��
generates hypotheses with errors ��� � � � � �T � where �t is as de�ned in Figure �� Assume each �t �
���� Then the error � � Pri�D �hf �xi� �� yi� of the �nal hypothesis hf output by AdaBoost�M�

is bounded above by

� � �T
TY
t��

q
�t��� �t��

Proof� To prove this theorem� we reduce our setup for AdaBoost�M� to an instantiation
of AdaBoost� and then apply Theorem �
 For clarity� we mark with tildes variables in the
reduced AdaBoost space
 For each of the given examples �xi� yi�� we de
ne an AdaBoost
example ��xi� �yi� in which �xi � i and �yi � �
 We de
ne the AdaBoost distribution �D over
examples to be equal to the AdaBoost�M� distribution D
 On the tth round� we provide
AdaBoost with a hypothesis �ht de
ned by the rule

�ht�i� � ��ht�xi� �� yi��

in terms of the tth hypothesis ht which was returned to AdaBoost�M� byWeakLearn

Given this setup� it can be easily proved by induction on the number of rounds that the

weight vectors� distributions and errors computed by AdaBoost and AdaBoost�M� are iden�
tical so that �wt � wt� �pt � pt� ��t � �t and ��t � �t

��

Algorithm AdaBoost�M�

Input� sequence of N examples h�x�� y��� � � � � �xN � yN �i with labels yi � Y � f�� � � � � kg
distribution D over the examples
weak learning algorithm WeakLearn

integer T specifying number of iterations

Initialize the weight vector� w�
i � D�i� for i � �� � � � � N

Do for t � �� �� � � � � T
�
 Set

pt �
wtPN
i�� w

t
i

�
 CallWeakLearn� providing it with the distribution pt� get back a hypothesis ht � X � Y

�
 Calculate the error of ht� �t �
PN

i�� p
t
i��ht�xi� �� yi��

If �t
 ���� then set T � t � � and abort loop

�
 Set �t � �t���� �t�

�
 Set the new weights vector to be

wt��
i � wt

i�
��		ht�xi� ��yi

t

Output the hypothesis

hf �x� � argmax
y�Y

TX
t��

�
log

�

�t

�
��ht�x� � y���

Figure �� A
rst multi�class extension of AdaBoost

��

Suppose that AdaBoost�M��s
nal hypothesis hf makes a mistake on instance i so that
hf �xi� �� yi
 Then� by de
nition of hf �

TX
t��

�t��ht�xi� � yi�� �
TX
t��

�t��ht�xi� � hf �xi���

where �t � ln����t�
 This implies

TX
t��

�t��ht�xi� � yi�� � �
�

TX
t��

�t�

using the fact that each �t � � since �t � ���
 By de
nition of �ht� this implies

TX
t��

�t�ht�i� � �
�

TX
t��

�t�

so �hf �i� � � by de
nition of the
nal AdaBoost hypothesis

Therefore�

Pri�D �hf�xi� �� yi� � Pri�D
h
�hf �i� � �

i
�

Since each AdaBoost instance has a ��label� Pri�D
h
�hf �i� � �

i
is exactly the error of �hf

Applying Theorem �� we can obtain a bound on this error� completing the proof

It is possible� for this version of the boosting algorithm� to allow hypotheses which generate

for each x� not only a predicted class label h�x� � Y � but also a �con
dence� ��x� � ��� ��
 The
learner then su�ers loss ��� � ��x��� if its prediction is correct and ��� � ��x��� otherwise

�Details omitted
�

��� Second multi�class extension

In this section we describe a second alternative extension of AdaBoost to the case where the
label space Y is
nite
 This extension requires more elaborate communication between the
boosting algorithm and the weak learning algorithm
 The advantage of doing this is that it
gives the weak learner more !exibility in making its predictions
 In particular� it sometimes
enables the weak learner to make useful contributions to the accuracy of the
nal hypothesis
even when the weak hypothesis does not predict the correct label with probability greater than
���

As described above� the weak learner generates hypotheses which have the form h � X�Y �
��� ��
 Roughly speaking� h�x� y� measures the degree to which it is believed that y is the
correct label associated with instance x
 If� for a given x� h�x� y� attains the same value for
all y then we say that the hypothesis is uninformative on instance x
 On the other hand� any
deviation from strict equality is potentially informative� because it predicts some labels to be
more plausible than others
 As will be seen� any such information is potentially useful for the
boosting algorithm

Below� we formalize the goal of the weak learner by de
ning a pseudo�loss which measures
the goodness of the weak hypotheses
 To motivate our de
nition� we
rst consider the following
setup
 For a
xed training example �xi� yi�� we use a given hypothesis h to answer k� � binary
questions
 For each of the incorrect labels y �� yi we ask the question�

��

�Which is the label of xi� yi or y��

In other words� we ask that the correct label yi be discriminated from the incorrect label y

Assume momentarily that h only takes values in f�� �g
 Then if h�xi� y� � � and h�xi� yi� �

�� we interpret h�s answer to the question above to be yi �since h deems yi to be a plausible
label for xi� but y is considered implausible�
 Likewise� if h�xi� y� � � and h�xi� yi� � � then the
answer is y
 If h�xi� y� � h�xi� yi�� then one of the two answers is chosen uniformly at random

In the more general case that h takes values in ��� ��� we interpret h�x� y� as a randomized
decision for the procedure above
 That is� we
rst choose a random bit b�x� y� which is � with
probability h�x� y� and � otherwise
 We then apply the above procedure to the stochastically
chosen binary function b
 The probability of choosing the incorrect answer y to the question
above is

Pr �b�xi� yi� � �
 b�xi� y� � �� � �
�Pr �b�xi� yi� � b�xi� y�� �

�
���� h�xi� yi� � h�xi� y���

If the answers to all k � � questions are considered equally important� then it is natural to
de
ne the loss of the hypothesis to be the average� over all k � � questions� of the probability
of an incorrect answer�

�

k � �
X
y ��yi

�
���� h�xi� yi� � h�xi� y�� � �

�

�
	�� h�xi� yi� �

�

k � �
X
y ��yi

h�xi� y�

A � ����

However� as was discussed in the introduction to Section �� di�erent discrimination questions
are likely to have di�erent importance in di�erent situations
 For example� considering the
OCR problem described earlier� it might be that at some point during the boosting process�
some example of the digit ��� has been recognized as being either a ��� or a ���
 At this stage
the question that discriminates between ��� �the correct label� and ��� is clearly much more
important than the other eight questions that discriminate ��� from the other digits

A natural way of attaching di�erent degrees of importance to the di�erent questions is to
assign a weight to each question
 So� for each instance xi and incorrect label y �� yi� we assign a
weight q�i� y� which we associate with the question that discriminates label y from the correct
label yi
 We then replace the average used in Equation ���� with an average weighted according
to q�i� y�� the resulting formula is called the pseudo�loss of h on training instance i with respect
to q�

plossq�h� i�
�
� �

�

�
	�� h�xi� yi� �

X
y ��yi

q�i� y�h�xi� y�

A�

The function q � f�� � � � � Ng � Y � ��� ��� called the label weighting function� assigns to each
example i in the training set a probability distribution over the k � � discrimination problems
de
ned above
 So� for all i� X

y ��yi

q�i� y� � ��

The weak learner�s goal is to minimize the expected pseudo�loss for given distribution D and
weighting function q�

plossD�q�h� �� Ei�D
h
plossq�h� i�

i
�

As we have seen� by manipulating both the distribution on instances� and the label weighting
function q� our boosting algorithm e�ectively forces the weak learner to focus not only on the

��

hard instances� but also on the incorrect class labels that are hardest to eliminate
 Conversely�
this pseudo�loss measure may make it easier for the weak learner to get a weak advantage
 For
instance� if the weak learner can simply determine that a particular instance does not belong
to a certain class �even if it has no idea which of the remaining classes is the correct one�� then�
depending on q� this may be enough to gain a weak advantage

Theorem ��� the main result of this section� shows that a weak learner can be boosted if
it can consistently produce weak hypotheses with pseudo�losses smaller than ���
 Note that
pseudo�loss ��� can be achieved trivially by any uninformative hypothesis
 Furthermore� a weak
hypothesis h with pseudo�loss �
 ��� is also bene
cial to boosting since it can be replaced by
the hypothesis �� h whose pseudo�loss is �� � � ���

Example �� As a simple example illustrating the use of pseudo�loss� suppose we seek an oblivious
weak hypothesis� i
e
� a weak hypothesis whose value depends only on the class label y so that
h�x� y� � h�y� for all x
 Although oblivious hypotheses per se are generally too weak to be
of interest� it may often be appropriate to
nd the best oblivious hypothesis on a part of the
instance space �such as the set of instances covered by a leaf of a decision tree�

Let D be the target distribution� and q the label weighting function
 For notational conve�
nience� let us de
ne q�i� yi� � �� for all i so that

plossq�h� i� �
�
�

�
	� �X

y�Y

q�i� y�h�xi� y�

A�

Setting
�y� �
P

iD�i�q�i� y�� it can be veri
ed that for an oblivious hypothesis h�

plossD�q�h� �
�
�

�
	� �X

y�Y

h�y�
�y�

A�

which is clearly minimized by the choice

h�y� �

�
� if
�y� � �
� otherwise

Suppose now that q�i� y� � ���k � �� for y �� yi� and let d�y� � Pri�D �yi � y� be the
proportion of examples with label y
 Then it can be veri
ed that h will always have pseudo�loss
strictly smaller than ��� except in the case of a uniform distribution of labels �d�y� � ��k
for all y�
 In contrast� when the weak learner�s goal is minimization of prediction error �as in
Section �
��� it can be shown that an oblivious hypothesis with prediction error strictly less than
��� can only be found when one label y covers more than ��� the distribution �d�y�
 ����

So in this case� it is much easier to
nd a hypothesis with small pseudo�loss rather than small
prediction error

On the other hand� if q�i� y� � � for some values of y� then the quality of prediction on
these labels is of no consequence
 In particular� if q�i� y� � � for all but one incorrect label for
each instance i� then in order to make the pseudo�loss smaller than ��� the hypothesis has to
predict the correct label with probability larger than ���� which means that in this case the
pseudo�loss criterion is as stringent as the usual prediction error
 However� as discussed above�
this case is unavoidable because a hard binary classi
cation problem can always be embedded
in a multi�class problem

��

This example suggests that it may often be signi
cantly easier to
nd weak hypotheses
with small pseudo�loss rather than hypotheses whose prediction error is small
 On the other
hand� our theoretical bound for boosting using the prediction error �Theorem ��� is stronger
than the bound for ploss �Theorem ���
 Empirical tests ���� have shown that pseudo�loss is
generally more successful when the weak learners use very restricted hypotheses
 However� for
more powerful weak learners� such as decision�tree learning algorithms� there is little di�erence
between using pseudo�loss and prediction error

Our algorithm� called AdaBoost�M�� is shown in Figure �
 Here� we maintain weights wt
i�y

for each instance i and each label y � Y � fyig
 The weak learner must be provided both with
a distribution Dt and a label weight function qt
 Both of these are computed using the weight
vector wt as shown in Step �
 The weak learner�s goal then is to minimize the pseudo�loss
�t� as de
ned in Step �
 The weights are updated as shown in Step �
 The
nal hypothesis
hf outputs� for a given instance x� the label y that maximizes a weighted average of the weak
hypothesis values ht�x� y�

Theorem �� Suppose the weak learning algorithmWeakLearn� when called byAdaBoost�M�
generates hypotheses with pseudo�losses ��� � � � � �T � where �t is as de�ned in Figure �� Then the
error � � Pri�D �hf �i� �� yi� of the �nal hypothesis hf output by AdaBoost�M� is bounded
above by

� � �k � ���T
TY
t��

q
�t��� �t��

Proof� As in the proof of Theorem ��� we reduce to an instance of AdaBoost and apply
Theorem �
 As before� we mark AdaBoost variables with a tilde

For each training instance �xi� yi� and for each incorrect label y � Y � fyig� we de
ne one
AdaBoost instance �xi�y � �i� y� with associated label �yi�y � �
 Thus� there are �N � N�k � ��
AdaBoost instances� each indexed by a pair �i� y�
 The distribution over these instances is
de
ned to be �D�i� y� � D�i���k � ��
 The tth hypothesis �ht provided to AdaBoost for this
reduction is de
ned by the rule

�ht�i� y� �
�
���� ht�xi� yi� � ht�xi� y���

With this setup� it can be veri
ed that the computed distributions and errors will be identical
so that �wt

i�y � wt
i�y � �p

t
i�y � pti�y � ��t � �t and ��t � �t

Suppose now that hf�xi� �� yi for some example i
 Then� by de
nition of hf �

TX
t��

�tht�xi� yi� �
TX
t��

�tht�xi� hf�xi���

where �t � ln����t�
 This implies that

TX
t��

�t�ht�i� hf�xi�� �
�
�

TX
t��

�t��� ht�xi� yi� � ht�xi� hf�xi��� � �
�

TX
t��

�t

so �hf �i� hf�xi�� � � by de
nition of �hf

Therefore�

Pri�D �hf �xi� �� yi� � Pri�D
h
	y �� yi � �hf �i� y� � �

i
�

��

Algorithm AdaBoost�M�
Input� sequence of N examples h�x�� y��� � � � � �xN � yN �i with labels yi � Y � f�� � � � � kg

distribution D over the examples
weak learning algorithm WeakLearn

integer T specifying number of iterations

Initialize the weight vector� w�
i�y � D�i���k � �� for i � �� � � � � N � y � Y � fyig

Do for t � �� �� � � � � T

�
 Set W t
i �

P
y ��yi

wt
i�y�

qt�i� y� �
wt
i�y

W t
i

for y �� yi� and set

Dt�i� �
W t

iPN
i��W

t
i

�

�
 Call WeakLearn� providing it with the distribution Dt and label weighting function qt�
get back a hypothesis ht � X � Y � ��� ��

�
 Calculate the pseudo�loss of ht�

�t �
�
�

NX
i��

Dt�i�

�
	�� ht�xi� yi� �

X
y ��yi

qt�i� y�ht�xi� y�

A�

�
 Set �t � �t���� �t�

�
 Set the new weights vector to be

wt��
i�y � wt

i�y�
��������ht�xi�yi��ht�xi�y��
t

for i � �� � � � � N � y � Y � fyig

Output the hypothesis

hf�x� � argmax
y�Y

TX
t��

�
log

�

�t

�
ht�x� y��

Figure �� A second multi�class extension of AdaBoost

��

Since all AdaBoost instances have a ��label� and by de
nition of �D� the error of �hf is

Pr�i�y�� �D

h
�hf �i� y� � �

i
� �

k � �Pri�D
h
	y �� yi � �hf �i� y� � �

i
�

Applying Theorem � to bound the error of �hf � this completes the proof

Although we omit the details� the bound for AdaBoost�M� can be improved by a factor

of two in a manner similar to that described in Section �
�

��� Boosting regression algorithms

In this section we show how boosting can be used for a regression problem
 In this setting�
the label space is Y � ��� ��
 As before� the learner receives examples �x� y� chosen at random
according to some distribution P � and its goal is to
nd a hypothesis h � X � Y which� given
some x value� predicts approximately the value y that is likely to be seen
 More precisely� the
learner attempts to
nd an h with small mean squared error �MSE��

E�x�y��P
h
�h�x�� y��

i
� ����

Our methods can be applied to any reasonable bounded error measure� but� for the sake of
concreteness� we concentrate here on the squared error measure

Following our approach for classi
cation problems� we assume that the learner has been
provided with a training set �x�� y��� � � � � �xN � yN� of examples distributed according to P � and
we focus only on the minimization of the empirical MSE�

�

N

NX
i��

�h�xi�� yi�
��

Using techniques similar to those outlined in Section �
�� the true MSE given in Equation ����
can be related to the empirical MSE

To derive a boosting algorithm in this context� we reduce the given regression problem to
a binary classi
cation problem� and then apply AdaBoost
 As was done for the reductions
used in the proofs of Theorems �� and ��� we mark with tildes all variables in the reduced
�AdaBoost� space
 For each example �xi� yi� in the training set� we de
ne a continuum of
examples indexed by pairs �i� y� for all y � ��� ��� the associated instance is �xi�y � �xi� y�� and
the label is �yi�y � ��y � yi��
 �Recall that ����� is � if predicate � holds and � otherwise
� Although
it is obviously infeasible to explicitly maintain an in
nitely large training set� we will see later
how this method can be implemented e"ciently
 Also� although the results of Section � only
dealt with
nitely large training sets� the extension to in
nite training sets is straightforward

Thus� informally� each instance �xi� yi� is mapped to an in
nite set of binary questions� one
for each y � Y � and each of the form� �Is the correct label yi bigger or smaller than y��

In a similar manner� each hypothesis h � X � Y is reduced to a binary�valued hypothesis
�h � X � Y � f�� �g de
ned by the rule

�h�x� y� � ��y � h�x����

Thus� �h attempts to answer these binary questions in a natural way using the estimated value
h�x�

Finally� as was done for classi
cation problems� we assume we are given a distribution D
over the training set� ordinarily� this will be uniform so that D�i� � ��N
 In our reduction�

��

this distribution is mapped to a density �D over pairs �i� y� in such a way that minimization of
classi
cation error in the reduced space is equivalent to minimization of MSE for the original
problem
 To do this� we de
ne

�D�i� y� �
D�i�jy� yij

Z

where Z is a normalization constant�

Z �
NX
i��

D�i�
Z �

�
jy � yijdy�

It is straightforward to show that ��� � Z � ���

If we calculate the binary error of �h with respect to the density �D� we
nd that� as desired�

it is directly proportional to the mean squared error�

NX
i��

Z �

�

����yi�y � �h��xi�y���� �D�i� y�dy �
�

Z

NX
i��

D�i�

�����
Z h�xi�

yi

jy � yijdy
�����

�
�

�Z

NX
i��

D�i��h�xi�� yi�
��

The constant of proportionality is ����Z� � ��� ��

Unraveling this reduction� we obtain the regression boosting procedure AdaBoost�R shown

in Figure �
 As prescribed by the reduction� AdaBoost�R maintains a weight wt
i�y for each

instance i and label y � Y
 The initial weight function w� is exactly the density �D de
ned
above
 By normalizing the weights wt� a density pt is de
ned at Step � and provided to the
weak learner at Step �
 The goal of the weak learner is to
nd a hypothesis ht � X � Y that
minimizes the loss �t de
ned in Step �
 Finally� at Step �� the weights are updated as prescribed
by the reduction

The de
nition of �t at Step � follows directly from the reduction above� it is exactly the clas�
si
cation error of �hf in the reduced space
 Note that� similar toAdaBoost�M�� AdaBoost�R
not only varies the distribution over the examples �xi� yi�� but also modi
es from round to round
the de
nition of the loss su�ered by a hypothesis on each example
 Thus� although our ultimate
goal is minimization of the squared error� the weak learner must be able to handle loss functions
that are more complicated than MSE

The
nal hypothesis hf also is consistent with the reduction
 Each reduced weak hypoth�
esis �ht�x� y� is non�decreasing as a function of y
 Thus� the
nal hypothesis �hf generated by
AdaBoost in the reduced space� being the threshold of a weighted sum of these hypotheses�
also is non�decreasing as a function of y
 As the output of �hf is binary� this implies that for
every x there is one value of y for which �hf �x� y�� � � for all y� � y and �hf �x� y�� � � for all
y�
 y
 This is exactly the value of y given by hf �x� as de
ned in the
gure
 Note that hf is
actually computing a weighted median of the weak hypotheses

At
rst� it might seem impossible to maintain weights wt
i�y over an uncountable set of points

However� on closer inspection� it can be seen that� when viewed as a function of y� wt
i�y is a

piece�wise linear function
 For t � �� w�
i�y has two linear pieces� and each update at Step �

potentially breaks one of the pieces in two at the point ht�xi�
 Initializing� storing and updating
such piece�wise linear functions are all straightforward operations
 Also� the integrals which
appear in the
gure can be evaluated explicitly since these only involve integration of piece�wise
linear functions

��

Algorithm AdaBoost�R
Input� sequence of N examples h�x�� y��� � � � � �xN � yN �i with labels yi � Y � ��� ��

distribution D over the examples
weak learning algorithm WeakLearn

integer T specifying number of iterations

Initialize the weight vector�

w�
i�y �

D�i�jy � yij
Z

for i � �� � � � � N � y � Y � where

Z �
NX
i��

D�i�
Z �

�
jy � yijdy�

Do for t � �� �� � � � � T

�
 Set

pt �
wtPN

i��

R �
� w

t
i�ydy

�

�
 Call WeakLearn� providing it with the density pt� get back a hypothesis ht � X � Y

�
 Calculate the loss of ht�

�t �
NX
i��

�����
Z ht�xi�

yi

pti�ydy

������
If �t
 ���� then set T � t � � and abort loop

�
 Set �t � �t���� �t�

�
 Set the new weights vector to be

wt��
i�y �

�
wt
i�y if yi � y � ht�xi� or ht�xi� � y � yi

wt
i�y�t otherwise

for i � �� � � � � N � y � Y

Output the hypothesis

hf �x� � inffy � Y �
X

t�ht�x��y

log����t� � �
�

X
t

log����t�g�

Figure �� An extension of AdaBoost to regression problems

��

The following theorem describes our performance guarantee for AdaBoost�R
 The proof
follows from the reduction described above coupled with a direct application of Theorem �

Theorem �� Suppose the weak learning algorithmWeakLearn� when called byAdaBoost�R�
generates hypotheses with errors ��� � � � � �T � where �t is as de�ned in Figure �� Then the mean
squared error � � Ei�D

�
�hf�xi�� yi�

�
�
of the �nal hypothesis hf output by AdaBoost�R is

bounded above by

� � �T
TY
t��

q
�t��� �t�� ����

An unfortunate property of this setup is that there is no trivial way to generate a hypoth�
esis whose loss is ���
 This is a similar situation to the one we encountered with algorithm
AdaBoost�M�
 A remedy to this problem might be to allow weak hypotheses from a more
general class of functions
 One simple generalization is to allow for weak hypotheses that are
de
ned by two functions� h � X � ��� �� as before� and � � X � ��� �� which associates a
measure of con
dence to each prediction of h
 The reduced hypothesis which we associate with
this pair of functions is

�h�x� y� �

�
�� � ��x���� if h�x� � y

��� ��x���� otherwise

These hypotheses are used in the same way as the ones de
ned before and a slight variation
of algorithm AdaBoost�R can be used to boost the accuracy of these more general weak
learners �details omitted�
 The advantage of this variant is that any hypothesis for which ��x�
is identically zero has pseudo�loss exactly ��� and slight deviations from this hypothesis can be
used to encode very weak predictions

The method presented in this section for boosting with square loss can be used with any
reasonable bounded loss function L � Y � Y � ��� ��
 Here� L�y�� y� is a measure of the
�discrepancy� between the observed label y and a predicted label y�� for instance� above we
used L�y�� y� � �y� � y��
 The goal of learning is to
nd a hypothesis h with small average
loss E�x�y��P �L�h�x�� y��
 Assume� for any y� that L�y� y� � � and that L�y

�� y� is di�erentiable
with respect to y�� non�increasing for y� � y and non�decreasing for y� � y
 Then� to modify
AdaBoost�R to handle such a loss function� we need only replace jy � yij in the initialization
step with j�L�y� yi���yj
 The rest of the algorithm is unchanged� and the modi
cations needed
for the analysis are straightforward

Acknowledgments

Thanks to Corinna Cortes� Harris Drucker� David Helmbold� Keith Messer� Volodya Vovk and
Manfred Warmuth for helpful discussions

References

��� Eric B
 Baum and David Haussler
 What size net gives valid generalization� In Advances
in Neural Information Processing Systems I� pages ��%��
 Morgan Kaufmann� ����

��� David Blackwell
 An analog of the minimax theorem for vector payo�s
 Paci�c Journal of
Mathematics� ������%�� Spring ����

��� Leo Breiman
 Bias� variance� and arcing classi
ers
 Unpublished manuscript
 Available
from ftp�&&ftp
stat
berkeley
edu&pub&users&breiman&arcall
ps
Z
� ����

��

��� Nicol'o Cesa�Bianchi� Yoav Freund� David P
 Helmbold� David Haussler� Robert E

Schapire� and Manfred K
 Warmuth
 How to use expert advice
 In Proceedings of the
Twenty�Fifth Annual ACM Symposium on the Theory of Computing� pages ���%���� ����

��� Thomas H
 Chung
 Approximate methods for sequential decision making using expert
advice
 In Proceedings of the Seventh Annual ACM Conference on Computational Learning
Theory� pages ���%���� ����

��� Thomas M
 Cover
 Universal portfolios
 Mathematical Finance� ������%��� January ����

��� Thomas G
 Dietterich and Ghulum Bakiri
 Solving multiclass learning problems via error�
correcting output codes
 Journal of Arti�cial Intelligence Research� �����%���� January
����

��� Harris Drucker and Corinna Cortes
 Boosting decision trees
 In Advances in Neural Infor�
mation Processing Systems
� ����

��� Harris Drucker� Robert Schapire� and Patrice Simard
 Boosting performance in neural net�
works
 International Journal of Pattern Recognition and Arti�cial Intelligence� ��������%
���� ����

���� Yoav Freund
 Data Filtering and Distribution Modeling Algorithms for Machine Learn�
ing
 PhD thesis� University of California at Santa Cruz� ����
 Retrievable from�
ftp
cse
ucsc
edu&pub&tr&ucsc�crl������
ps
Z

���� Yoav Freund
 Boosting a weak learning algorithm by majority
 Information and Com�
putation� To appear
 An extended abstract appeared in Proceedings of the Third Annual
Workshop on Computational Learning Theory� ����

���� Yoav Freund and Robert E
 Schapire
 Experiments with a new boosting algorithm
 In
Machine Learning� Proceedings of the Thirteenth International Conference� pages ���%
���� ����

���� Yoav Freund and Robert E
 Schapire
 Game theory� on�line prediction and boosting
 In
Proceedings of the Ninth Annual Conference on Computational Learning Theory� pages
���%���� ����

���� James Hannan
 Approximation to Bayes risk in repeated play
 In M
 Dresher� A
 W

Tucker� and P
 Wolfe� editors� Contributions to the Theory of Games� volume III� pages
��%���
 Princeton University Press� ����

���� David Haussler� Jyrki Kivinen� and Manfred K
 Warmuth
 Tight worst�case loss bounds
for predicting with expert advice
 In Computational Learning Theory� Second European
Conference� EuroCOLT ���� pages ��%��
 Springer�Verlag� ����

���� Je�rey C
 Jackson and Mark W
 Craven
 Learning sparse perceptrons
 In Advances in
Neural Information Processing Systems
� ����

���� Michael Kearns� Yishay Mansour� Andrew Y
 Ng� and Dana Ron
 An experimental and
theoretical comparison of model selection methods
 In Proceedings of the Eighth Annual
Conference on Computational Learning Theory� ����

��

���� Michael J
 Kearns and Umesh V
 Vazirani
 An Introduction to Computational Learning
Theory
 MIT Press� ����

���� Jyrki Kivinen and Manfred K
Warmuth
 Using experts for predicting continuous outcomes

In Computational Learning Theory� EuroCOLT ���� pages ���%���
 Springer�Verlag� ����

���� Nick Littlestone and Manfred K
 Warmuth
 The weighted majority algorithm
 Information
and Computation� �������%���� ����

���� J
 Ross Quinlan
 Bagging� boosting� and C�
�
 In Proceedings� Fourteenth National Con�
ference on Arti�cial Intelligence� ����

���� Robert E
 Schapire
 The strength of weak learnability
 Machine Learning� ��������%����
����

���� V
 N
 Vapnik
 Estimation of Dependences Based on Empirical Data
 Springer�Verlag� ����

���� V
 G
 Vovk
 A game of prediction with expert advice
 In Proceedings of the Eighth Annual
Conference on Computational Learning Theory� ����

���� Volodimir G
 Vovk
 Aggregating strategies
 In Proceedings of the Third Annual Workshop
on Computational Learning Theory� pages ���%���� ����

���� R
 S
 Wenocur and R
 M
 Dudley
 Some special Vapnik�Chervonenkis classes
 Discrete
Mathematics� ������%���� ����

A Proof of Theorem �

We start with a brief review of a framework used by Vovk ����� which is very similar to the
framework used in Section �
 In this framework� an on�line decision problem consists of a
decision space �� an outcome space � and a loss function 	 � ���� ������ which associates
a loss to each decision and outcome pair
 At each trial t the learning algorithm receives the
decisions �t�� � � � � �

t
N � � of N experts� and then generates its own decision
t � �
 Upon

receiving an outcome �t � �� the learner and each expert i incur loss 	�
t� �t� and 	��ti� �
t��

respectively
 The goal of the learning algorithm is to generate decisions in such a way that
its cumulative loss will not be much larger than the cumulative loss of the best expert
 The
following four properties are assumed to hold�

�
 � is a compact topological space

�
 For each �� the function
 � 	�
� �� is continuous

�
 There exists
 such that� for all �� 	�
� �� ��

�
 There exists no
 such that� for all �� 	�
� �� � �

We now give Vovk�s main result ����
 Let a decision problem de
ned by �� � and 	 obey
Assumptions �%�
 Let c and a be positive real numbers
 We say that the decision problem is
�c� a��bounded if there exists an algorithm A such that for any
nite set of experts and for any

nite sequence of trials� the cumulative loss of the algorithm is bounded by

TX
t��

	�
t� �t� � cmin
i

TX
t��

	��ti� �
t� � a lnN�

��

where N is the number of experts

We say that a distribution D is simple if it is non�zero on a
nite set denoted dom�D�
 Let S

be the set of simple distributions over �
 Vovk de
nes the following function c � ��� ��� �����
which characterizes the hardness of any decision problem�

c��� � sup
D�S

inf
���

sup
��

	�
� ��

log�
P

��dom�D� �
������D��� � ����

He then proves the following powerful theorem�

Theorem �� �Vovk	 A decision problem is �c� a��bounded if and only if for all � � ��� ���
c � c��� or a � c���� ln������

Proof of Theorem �� The proof consists of the following three steps� We
rst de
ne a decision
problem that conforms to Vovk�s framework
 We then show a lower bound on the function c���
for this problem
 Finally� we show how any algorithm A� for the on�line allocation problem can
be used to generate decisions in the de
ned problem� and so we get from Theorem �� a lower
bound on the worst case cumulative loss of A

The decision problem is de
ned as follows
 We
x an integer K
 � and set � � SK where
SK is the K dimensional simplex� i
e
� SK � fx � ��� ��K �PK

i�� xi � �g
 We set � to be the set
of unit vectors in RK � i
e
� � � fe�� � � � � eKg where ei � f�� �gK has a � in the ith component�
and � in all other components
 Finally� we de
ne the loss function to be 	�
� ei�

�
�
 � ei �
i

One can easily verify that these de
nitions conform to Assumptions �%�

To prove a lower bound on c��� for this decision problem we choose a particular simple

distribution over the decision space �
 Let D be the uniform distribution over the unit vectors�
i
e
� dom�D� � fe�� � � � � eKg
 For this distribution� we can explicitly calculate

c��� � inf
���

sup
��

	�
� ��

log�
P

��dom�D� �
������D��� � ����

First� it is easy to see that the denominator in Equation ���� is a constant�

X
��dom�D�

�������D��� � �

K
�
K � �
K

� ����

For any probability vector
 � �� there must exist one component i for which
i � ��K
 Thus

inf
���

sup
��

	�
� �� � ��K� ����

Combining Equations ����� ���� and ����� we get that

c��� � ln�����

K ln��� ���
K �

� ����

We now show how an on�line allocation algorithm A can be used as a subroutine for solving
this decision problem
 We match each of the N experts of the decision problem with a strategy
of the allocation problem
 Each iteration t of the decision problem proceeds as follows

�
 Each of the N experts generates a decision �ti � SK

�
 The algorithm A generates a distribution pt � SN

��

�
 The learner chooses the decision
t �
PN

i�� p
t
i�
t
i

�
 The outcome �t � � is generated

�
 The learner incurs loss
t � �t� and each expert su�ers loss �ti � �t

�
 Algorithm A receives the loss vector �t where �ti � �ti � �t� and incurs loss

pt � �t �
NX
i��

pti��
t
i � �t� � �

NX
i��

pti�
t
i� � �t �
t � �t�

Observe that the loss incurred by the learner in the decision problem is equal to the loss
incurred by A
 Thus� if for algorithm A we have an upper bound of the form

LA � cmin
i
Li � a lnN�

then the decision problem is �c� a��bounded
 On the other hand� using the lower bound given
by Theorem �� and the lower bound on c��� given in Equation ����� we get that for any K and
any �� either

c � ln�����

K ln��� ���
K �

or a � �

K ln��� ���
K �

� ����

As K is a free parameter we can let K � � and the denominators in Equation ���� become
�� � which gives the statement of the theorem

��

