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AbstractÐA top-down progressive deepening method is developed for efficient

mining of multiple-level association rules from large transaction databases based

on the Apriori principle. A group of variant algorithms is proposed based on the

ways of sharing intermediate results, with the relative performance tested and

analyzed. The enforcement of different interestingness measurements to find

more interesting rules, and the relaxation of rule conditions for finding ªlevel-

crossingº association rules, are also investigated in the paper. Our study shows

that efficient algorithms can be developed from large databases for the discovery

of interesting and strong multiple-level association rules.
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multiple-level association rules, algorithms, performance.
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1 INTRODUCTION

MINING of association rules from large data sets has been a focused
topic in recent data mining research [1], [3], [4], [2], [9], [8], [10],
[11], [14], [22], [15], [16], [18], [17], [19], [20], [21], [24]. Many
applications at mining associations require that mining be
performed at multiple levels of abstraction. For example, besides
finding 80 percent of customers that purchase milk may also purchase-
bread, it is interesting to allow users to ªdrill-downº and show that
75 percent of people buy wheat bread if they buy 2 percent milk. The
association relationship in the latter statement is expressed at a
lower level of abstraction but carries more specific and concrete
information than that in the former. Therefore, a data mining
system should provide efficient methods for mining multiple-level
association rules.

To explore multiple-level association rule mining, one needs to
provide: 1) data at multiple levels of abstraction, and 2) efficient
methods for multiple-level rule mining. The first requirement can
be satisfied by providing concept taxonomies from the primitive
level concepts to higher levels. In many applications, the taxonomy
information is either stored implicitly in the database, such as,
ªWonder wheat bread is a wheat bread which is in turn a bread,º or
provided by experts or users, such as, ªFreshman is an undergraduate
student,º or computed by applying some clustering analysis
methods [12]. With the recent development of data warehousing
and OLAP technology, arranging data at multiple levels of
abstraction has been a common practice [6]. Therefore, in this
study, we assume such concept taxonomies exist, and our study is
focused at the second requirement, the efficient methods for
multiple-level rule mining.

There are several possible directions to explore efficient mining
of multiple-level association rules.

One choice is the direct application of the existing single-level
association rule mining methods to multiple-level association

mining. For example, one may apply the Apriori algorithm [3] to
examine data items at multiple levels of abstraction under the
same minimum support and minimum confidence thresholds.
This direction is simple, but it may lead to some undesirable
results. First, large support is more likely to exist at high levels of
abstraction. If one wants to find strong associations at relatively
low levels of abstraction, the minimum support threshold must be
reduced substantially, which may lead to the generation of many
uninteresting associations at high or intermediate levels. Second,
since it is unlikely to find many strong association rules at a
primitive concept level, mining strong associations should be
performed at a rather high concept level, which is actually the
case in many studies [1], [3]. However, mining association rules at
high concept levels may often lead to the rules corresponding to
prior knowledge and expectations [15], such as ªmilk ) breadº,
(which could be common sense), or lead to some uninteresting
attribute combinations if the minimum support is allowed to be
rather small, such as ªtoy ) milkº, (which may just happen
together by chance).

These observations lead us to examine the second choice:
applying different minimum support thresholds, and possibly
different minimum confidence thresholds as well, at mining
associations at different levels of abstraction. Especially, we
explore the most typical case: progressively reducing the
minimum support thresholds at lower levels of abstraction. This
leads to mining interesting association rules at multiple concept
levels, which may not only discover rules at different levels, but
may also have high potential to find nontrivial, informative
association rules because of its flexibility for focusing the
attention to different sets of data and applying different thresh-
olds at different levels.

In this study, a progressive deepening method is developed by
extension of the Apriori algorithm for mining single-level associa-
tion rules [3]. The method first finds frequent data items at the top-
most level and then progressively deepens the mining process into
their frequent descendants at lower concept levels.

One important assumption that we have made in this study is
to explore only the descendants of the frequent items, since we
consider if an item occurs rarely, its descendants will occur even
less frequently and, thus, are uninteresting. Efficient level-shared
mining can be explored based on this assumption. One may
wonder whether this may miss the associations containing the
items which are frequent according to the reduced minimum
support threshold at low level but whose ancestors are infrequent.
This concern can be addressed with a minor modification to our
method as follows. First, we adopt two minimum support
thresholds at a high level: one for cutting off infrequent items at
the current level and the other (called level passage threshold) for
passing down relatively frequent items to its lower level. Second, a
user may slide down the level passage threshold at high levels to
allow the passage of the descendants of the ªsubfrequentº items
down to lower levels. One may even slide it down to the same
minimum support threshold as that at the lowest level and thus
open the venue for the descendants of all the items. By adding this
mechanism, the algorithm presented in this paper will give users
the flexibility to control the mining process as well as the chance to
reduce the meaningless associations to be generated.

The necessity for mining multiple-level association rules or
using taxonomy information at mining association rules has also
been observed by other researchers, e.g., [23]. A major difference
between our study and theirs is that they use the same support
threshold across all the levels [23], whereas we use different
support thresholds for different levels of abstraction. As discussed
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above, using a single support threshold will allow many unin-
teresting rules to be generated together with the interesting ones if
the threshold is rather low, but will disallow many interesting
rules to be generated at low levels if the threshold is rather high.
Therefore, in their study, substantial efforts have been made on
how to identify and remove the redundant rules across different
levels.

In our study, besides the investigation of several optimization
techniques by exploring level-shared mining, two interestingness
measures for filtering uninteresting rules are also studied, which
subsumes the one used in [23].

The paper is organized as follows. In Section 2, the concepts
related to multiple-level association rules are introduced. In
Section 3, a method for mining multiple-level association rules in
large data sets is proposed and a set of variant algorithms for
mining multiple-level association rules are introduced, with their
relative efficiency analyzed. In Section 4, a performance study is
conducted on different kinds of data distributions which identify
the conditions for the selection of algorithms. Section 5 is on
mining cross-level association rules. Section 6 discusses the
filtering of uninteresting association rules. The study is concluded
in Section 7, along with some future work.

2 MULTIPLE LEVEL ASSOCIATION RULES

We assume that the database contains: 1) an item data set which
contains the description of each item in I in the form of
hAi; descriptionii, where Ai 2 I , and 2) a transaction data set, T ,
which consists of a set of transactions hTi; fAp; . . . ; Aqgi, where Ti is
a transaction identifier and Ai 2 I (for i � p; . . . ; q).

Definition 2.1. A pattern or an itemset, A, is one item Ai or a set of
conjunctive items Ai ^ � � � ^ Aj, where Ai; . . . ; Aj 2 I . The support
of a pattern A in a set S, ��A=S�, is the number of transactions (in S)
which contain A versus the total number of transactions in S. The
confidence of A) B in S, '�A) B=S�, is the ratio of ��A ^B=S�
versus ��A=S�, i.e., the probability that pattern B occurs in S when
pattern A occurs in S.

To find relatively frequently occurring patterns and reasonably
strong rule implications, a user or an expert may specify two
thresholds: minimum support, �0, and minimum confidence, '0.
Notice that, for finding multiple-level association rules, different
minimum support and/or minimum confidence can be specified at
different levels.

Definition 2.2. A pattern A is frequent in set S at level l if the support
of A is no less than its corresponding minimum support threshold �0l.
A rule ªA ) B=Sº is strong if, for a set S, each ancestor (i.e., the

corresponding high-level item) of every item in A and B, if any, is

frequent at its corresponding level, ªA ^B=Sº is frequent (at the

current level), and the confidence of ªA) B=Sº is no less than

minimum confidence threshold at the current level.

The definition implies a filtering process which confines the

patterns to be examined at lower levels to be only those with large

supports at their corresponding high levels (and thus avoids the

generation of many meaningless combinations formed by the

descendants of the infrequent patterns). For example, in a

sales_transaction data set, if milk is a frequent pattern, its

lower level patterns, such as 2 percent milk, will be examined;

whereas if fish is an infrequent pattern, its descendants, such as

salmon, will not be examined further.
Based on this definition, the idea of mining multiple-level

association rules is illustrated below.

Example 2.1. Let the query be to find multiple-level strong

associations in the database in Table 1 for the purchase patterns

related to category, content, and brand of the foods which can

only be stored for less than three weeks.

The relevant part of the sales_item description relation in

Table 2 is fetched and generalized into a generalized sales_item

description table, as shown in Table 3, in which each tuple

represents a generalized item which is the merge of a group of

tuples which share the same values in the interested attributes. For

example, the tuples with the same category, content, and brand in

Table 2 are merged into one, with their bar codes replaced by a

bar_code set. Each group is then treated as an atomic item in the

generation of the lowest level association rules. For example, the

association rule generated regarding milk will be only in relevance

to (at the low concept levels) brand (such as Dairyland) and content

(such as 2 percent) but not to size, producer, etc.
The taxonomy information is provided implicitly in Table 3.

Let category (such as ªmilkº) represent the first-level concept,

content (such as ª2 percentº) for the second-level one, and brand

(such as ªForemostº) for the third-level one. The table implies

a concept tree like Fig. 1.
The process first discovers frequent patterns and strong

association rules at the top-most concept level. Let the minimum

support at this level be 5 percent and the minimum confidence be

50 percent. One may find: A set of single frequent items (each

called a frequent 1-itemset, with the support in parentheses):

ªbread (25 percent), vegetable (30 percent), . . . ,º a set of pair-wised

frequent items (each called a frequent 2-itemset): ªhvegetable,

bread (19 percent)i; . . . },º etc., and a set of strong association rules,

such as, ª bread ) vegetable (76 percent), . . . :º
At the second level, let the minimum support be 2 percent

and the minimum confidence be 40 percent. One may find

frequent 1-itemsets: ªlettuce (10 percent), wheat bread (15

percent),. . . ; º and frequent 2-itemsets: ªhlettuce, wheat bread (6

percent)i; . . . ; º and strong association rules: ªlettuce ) wheat

bread (60 percent),. . .; º etc.
The process repeats at even lower concept levels until no

frequent patterns can be found.
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3 A METHOD FOR MINING MULTIPLE-LEVEL

ASSOCIATION RULES

A method for mining multiple-level association rules is introduced
in this section, which uses a hierarchy-information encoded
transaction table instead of the original transaction table. This is
because a data mining query is usually in relevance to only a
portion of the transaction database, such as food, instead of all the
items. It is beneficial to first collect the relevant set of data and then
work repeatedly on the task-relevant set. Encoding can be
performed during the collection of task-relevant data and, thus,
there is no extra ªencoding passº required. Besides, an encoded
string, which represents a position in a hierarchy, requires fewer
bits than the corresponding object-identifier or bar-code. There-
fore, it is often beneficial to use an encoded table, although our
method does not rely on the derivation of such an encoded table
because the encoding can always be performed on the fly.

To simplify our discussion, an abstract example which
simulates the real life example of Example 2.1 is analyzed
as follows.

Example 3.1. As stated above, the taxonomy information for each
(grouped) item in Example 2.1 is encoded as a sequence of
digits in the transaction table T [1] (Table 4). For example, the
item `2 percent Foremost milk' is encoded as `112' in which
the first digit, `1', represents `milk' at level-1, the second, `1',
for `2 percent (milk)' at level-2, and the third, `2', for the brand
`Foremost' at level-3. Similar to [3], repeated items (i.e., items
with the same encoding) at any level will be treated as one
item in one transaction.

The derivation of the frequent item sets at level 1 proceeds as
follows. Let the minimum support be 4 transactions (i.e.,
minsup�1� � 4�.1 The level-1 frequent 1-itemset table L�1; 1� can
be derived by scanning T �1�, registering support of each general-
ized item, such as 1 � �; . . . ; 4 � �, if a transaction contains such an
item, and filtering out those whose accumulated support count is
lower than the minimum support. L�1; 1� is then used to filter out:
1) any item which is not frequent in a transaction, and 2) the
transactions in T �1� which contain only infrequent items. This
results in the filtered transaction table T �2� of Fig. 2. Moreover,
since there are only two entries in L�1; 1�, the level-1 frequent

2-itemset table L�1; 2� may contain only one candidate item
f1 � �; 2 � �g, which is supported by four transactions in T �2�.

According to the definition of ML-association rules, only the
descendants of the frequent items at level-1 (i.e., in L�1; 1�) are
considered as candidates in the level-2 frequent 1-itemsets. Let
minsup�2� � 3. The level-2 frequent 1-itemsets L�2; 1� can be
derived from the filtered transaction table T �2� by accumulating
the support count and removing those whose support is smaller
than the minimum support, which results in L�2; 1� of Fig. 3.
Similarly, the frequent 2-itemset table L�2; 2� is formed by the
combinations of the entries in L�2; 1�, together with the support
derived from T �2�, filtered using the corresponding threshold.
Likewise, the frequent 3-itemset table L�2; 3� is formed by the
combinations of the entries in L�2; 2�.

Finally, L�3; 1� and L�3; 2� at level 3 are computed in a similar
process, with the results shown in Fig. 3. The computation
terminates since there is no deeper level requested in the query.
Note that the derivation also terminates when an empty frequent
1-itemset table is generated at any level.

3.1 Algorithm ML_T2L1

The above discussion leads to the following algorithm for mining
strong ML-association rules.

Algorithm 3.1 (ML_T2L1). Find multiple-level frequent item sets for
mining strong ML association rules in a transaction database.

Input: 1) T �1�, a hierarchy-information-encoded and task-relevant
set of transaction database, in the format of hTID; Itemseti, in
which each item in the Itemset contains encoded concept
hierarchy information, and 2) the minimum support threshold
(minsup�l�) for each concept level l.

Output: Multiple-level frequent item sets.

Method: A top-down, progressively deepening process which
collects frequent item sets at different concept levels as
follows:

Starting at level 1, derive for each level l, the frequent k-items
sets, L�l; k�, for each k, and the frequent item set, LL�l� (for all
ks), as follows (in the syntax similar to C and Pascal, which
should be self-explanatory):

1. for (l :� 1; L�l; 1� 6� ; and l < max level; l++) do {
2. if l � 1 then {
3. L�l; 1� := get frequent 1 itemsets�T �1�; l�;
4. T �2� := get filtered t table�T �1�;L�1; 1��;
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1. For the sake of simplicity, notice that, since the total number of
transactions is fixed, the support is expressed in an absolute value rather
than a relative percentage.

Fig. 1. A taxonomy for the relevant data items.

TABLE 3
A Generalized sales_item Description Table



5. }
6. else L�l; 1� := get frequent 1 itemsets�T �2�; l�;
7. for (k :� 2; L�l; kÿ 1� 6� ;; k++) do {
8. Ck :� apriori gen�L�l; kÿ 1��;

// candidate generation algorithm in Apriori [3]
9. foreach transaction t 2 T �2� do {
10. Ct :� get subsets�Ck; t�;
11. foreach candidate c 2 Ct do c.support++;
12. }
13. L�l; k� :� fc 2 Ckjc:support � minsup�l�g
14. }
15. LL�l� :� Sk L�l; k�;
16. } ut

After finding the frequent itemsets, the set of association

rules for each level l can be derived from the frequent itemsets

LL�l� based on the minimum confidence at this level, minconf �l�,
as in [3].

Potential performance improvements of Algorithm ML_T2L1

are considered by exploration of the sharing of data structures, and

intermediate results and maximal generation of results at each

database scan, etc.

3.2 Algorithm ML_T1LA

The first variation is to use only one encoded transaction table

T �1�, that is, no filtered encoded transaction table T �2� will be

generated in the processing. Moreover, the support for the

candidate sets at all the levels are computed at the same time

by scanning T �1� once. This algorithm avoids the generation of a

new encoded transaction table. Moreover, it needs to scan T �1�
once for generation of each frequent k-itemset table. Since the total

number of scanning of T �1� will be k times for the largest k-

itemsets, it is a potentially efficient algorithm. However, T �1� may

consist of many infrequent items which could be wasteful to be
scanned or examined. Also, it needs a large space to keep all C�l�,
which may cause some page swapping.

3.3 Algorithm ML_TML1

The second variation is to generate multiple encoded
transaction tables T �1�; T �2�; . . . ; T �max l� 1�, where max l is
the maximal level number to be examined in the proces-
sing. A new table T �l� 1� is generated at the processing of each
level l, for l > 1. This is done by scanning T �l� to generate the
frequent 1-itemsets L�l; 1�, which serves as a filter to filter out from
T �l� any infrequent items or transactions containing only infre-
quent items, and results in T �l� 1�, which will be used for the
generation of frequent k-itemsets (for k > 1) at level l and table
T �l� 2� at the next lower level. Notice that, as an optimization, for
each level l > 1, T �l�, and L�l; 1� can be generated in parallel (i.e., at
the same scan).

The algorithm derives a new filtered transaction table,
T �l� 1�, at the processing of each level l. This may save a
substantial amount of processing if only a small portion of data
are frequent items at each level. However, it may not be so
effective if only a small number of the items will be filtered out
at the processing of each level.

3.4 Algorithm ML_T2LA

The third variation uses the same two encoded transaction tables
T �1� and T �2� as in Algorithm ML_T2L1, but it integrates some
optimization techniques considered in the algorithm ML_T1LA.
That is, the support for each candidate itemset at the level
l�l � 1) is calculated at the same time by scanning T �2� once.
This algorithm avoids the generation of a group of new filtered
transaction tables. It scans T �1� twice to generate T �2� and the
frequent 1-itemset tables for all the levels. Then, it scans T �2�
once for the generation of each frequent k-itemset and, thus,
scans T �2� in total kÿ 1 times for the generation of all the k-
itemsets, where k is the largest such k-itemsets available. Since k-
itemsets generation for k > 1 is performed on T �2�, which may
consist of much fewer items than T �1�, the algorithm could be a
potentially efficient one.

4 Performance Study

To study the performance of the propsoed algoirthms, all four
algorithmsÐML T2L1; ML T1LA; ML TML1; and ML T2LA

Ðare implemented and tested on a Sun/Sparcstation20 with 32
MB of main memory running Solaris 2.5.

The testbed consists of a set of synthetic transaction databases
generated using a randomized transaction generation algorithm
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TABLE 4
Encoded Transaction Table: T �1�

Fig. 2. Large item sets at level 1 and filtered transaction table: T �2�:



similar to that described in [3]. We select I, the total number of

items, to be 1,000; L, the number of potentially frequent itemsets, to

be 2,000; and D, the total number of transactions, to be 100,000. The

scale-up tests on total number of items, I; average size of

transactions, T ; and total number of tuples, D, showed satisfactory

results as well [13].
Two database settings are used, DB1, with average size (the

number of items) of potentially frequent itemsets of 4 and average

transaction size (the number of items) of 10, and DB2, with average

size of potentially frequent itemsets of 6 and average transaction

size of 20.
Each transaction database is converted into an encoded

transaction talle, denoted as T �1�, according to the information

above the generalized items in the item description (hierarchy)

table. The maximal level of the concept hierarchy in the item table

is set to 3. The number of the top level nodes keeps increasing

until the total number of items reaches I. The fan-outs at the lower

levels are selected based on the normal distribution, with mean

value being B2 and B3 for levels 2 and 3, respectively, and with a

variance of 2.0. Our experiments show little differences for a

variance of 1.0 or 3.0. Two item description tables, I1 and I2, are

used which are generated using �B2 � 10; B3 � 10� and

�B2 � 8; B3 � 5�, respectively.

4.1 Performance Comparison of Algorithms

The testing results presented in this section are on two synthetic

transaction databases: DB1I1, which uses the database setting

DB1 and the item description table I1; and DB2I2, which uses the

database setting DB2 and the item description table I2. For both

databases, we test the algorithms with respect to the minimum

support thresholds at all three levels. Tests on other databases

with different database settings and item table settings show

similar results.
Fig. 4 shows the running time of the four algorithms on

DB1I1 and DB2I2, with respect to the minimum support

threshold at level 1. The minimum supports at level 2 and 3

are fixed to 2 percent and 0.75 percent for DB1I1, and 3 percent

and 1 percent for DB2I2.

The level 2 minimum support threshold is set to 2 percent for
DB1I1 and 3 percent for DB2I2, which means no filtering of
items in transactions at level 2. Therefore, T �3� has the same size of
T �2� and the derivation of T �3� is a waste. It is obvious that
ML TML1 is always worse than ML T2LA and ML T2L1 for
these minimum supports.

Fig. 5 shows the running time for the four algorithms on DB1I1

and DB2I21 with respect to the minimum support threshold at
level 2. The minimum supports at levels 1 and 3 are fixed to 60
percent and 0.75 percent for DB1I1, and 55 percent and 1 percent
for DB2I2.

Fig. 6 shows the running time of the four algorithms on
DB1I1and DB2I2, with respect to the minimum support threshold
at level 3. The minimum supports at levels 1 and 2 are fixed to 60
percent and 2 percent for DB1I1 and 55 percent and 3 percent for
DB2I2.

The above figures show two interesting features. First, the
relative performance of the four algorithms is highly relevant to the
threshold setting (i.e., the power of a filter at each level), especially
the level 1 and level 2 thresholds. Thus, based on the effectiveness
of a threshold, a good algorithm can be selected to achieve good
performance. Second, the optimization of parallel derivation of
L�l; k� is very useful and the derivation of T �2� is usually beneficial.
This can be verified by the experimental results, which show
ML T1LA is always the best or the second best algorithm.

5 MINING CROSS-LEVEL ASSOCIATIONS

The multilevel association rule mining algorithms presented in
Section 3 may generate a large number of association rules which
are confined to level-by-level relationships in a hierarchy. This
can be relaxed to allow the exploration of ªcross-levelº association
rules, i.e., the mining is not confined to those associations among
the concepts at the same level of a hierarchy. This relaxation may
lead to the discovery of associations like ª2 percent Foremost

milk )Wonder breadº in which the concept at the left-hand side
is at a lower level of a hierarchy than the one at the right-hand
side. Since such a mining request can be implemented by slightly
modifying our algorithms, formal presentation of the extended
algorithms is omitted. Only the modifications are outlined below.
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Fig. 3. Large item sets at levels 2 and 3.



First, a single minimum support threshold is used at all levels.
Second, when the frequent k-itemsets (for k > 1) are generated,
items at all levels are considered together, but itemsets which
contain an item and its ancestor are excluded.

Two algorithms are implemented to find cross-level rules,
ML T2LA-C and ML T1LA-C, which are revised versions of
ML T2LA and ML T1LA, respectively. Our experiments show
both algorithms are an order of magnitude slower than their
counterparts for minimum supports from 1 percent to 5 percent
[13]. This is because there are many more frequent itemsets at high
levels and the support computation is more complex.

6 PRESENTATION OF INTERESTING ASSOCIATION

RULES

Not every strong rule so discovered (i.e., passing the minimum
support and minimum confidence thresholds) is interesting
enough to be presented to users. Two interestingness measures
are proposed to filter redundant rules and unnecessary rules.

6.1 Removal of Redundant Rules

A rule is redundant if it can be derived or computed from a higher
level rule (every item is the same or a higher level item) and the
simple assumption of a relatively uniform distribution. For
examples, suppose there is a rule ªmilk ! bread (12 percent
support, 85 percent confidence).º Then, another rule ªchocolate milk
! bread (1 percent support, 84 percent confidence)º may not be
interesting if 8 percent of milk are chocolate milk since such a rule

does not convey additional information and is less general than its

corresponding high-level counterpart (if the uniform data dis-

tribution is assumed).

Definition 6.1. A rule R, A1 ^A2 � � �An ) B1 ^ B2 � � �Bm is

redundant if there is a rule R0, A01 ^A02 � � �A0n ) B01 ^B02 � � �B0m,

every item in R is a descendant or the same of the corresponding item

i n R0, a n d '�R� 2 �exp�'�R�� ÿ �; exp�'�R�� � �� w h e r e

exp�'�R�� � ���B1�=��B01�� � � � � � ���Bn�=��B0n�� � '�R0�, and

� is a user-defined constant.

To remove such redundant rules, when a rule R passes the

minimum confidence test, it is checked against every strong rule

R0, of which R is a descendant. If the confidence of R, '�R�, falls in

the range of the expected confidence with the variation of �, it is

not output to user.
From our experiments, it is clear that, by removing redundant

rule, we can cut down the number of rule presented to 30 percent

to 60 percent of all strong rules [13]. In addition, the reduction

ratio decreases slowly when � increases because more rules

are removed.

6.2 Removal of Unnecessary Rules

If we have a rule ª80 percent of customers who buy milk also buy

bread,º a rule ª80 percent of customers who buy milk and butter

also buy breadº provides little extra information than the previous

one. Such a rule is unnecessary because it is not significantly

different from a simpler rule and, thus, is uninteresting [7].
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Fig. 5. Minimum support at level 2.
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Definition 6.2. A rule R, A ^ C ) B is unnecessary if there is a rule

R0, A) B, and '�R� 2 �'�R0� ÿ �; '�R0� � ��, where � is a user

given constant, A;B;C are itemsets, and C is not empty.

To filter out such kinds of unnecessary association rules, for
each strong rule R : A) B, we test every such rule
R0 : Aÿ C ) B, where C � A. If the confidence of R, '�R�, is
not significantly different (specified by �) from that of R0, '�R0�, it
is not presented to user.

Our experiments reveal that the removal of unnecessary rules

can reduce the number of presented rules to 50 percent to 80

percent of all strong rules [13].

7 CONCLUSIONS AND FUTURE WORK

We have extended the scope of the study of mining association
rules from single level to multiple concept levels and studied
methods for mining multiple-level association rules from large
transaction databases. Mining multiple-level association rules
may lead to progressive mining of refined knowledge from data
and have interesting applications for knowledge discovery in
transaction-based, as well as other business or engineering,
databases. A top-down progressive deepening technique is
developed for mining multiple-level association rules. Based on
different sharing techniques, a group of algorithms have been
developed. Our performance study shows that different algo-
rithms may have the best performance for different distributions
of data. Methods for mining cross-level association rules and
interestingness measures for association rules are also investi-
gated. Our study shows that mining multiple-level association
rules from databases has wide applications, and efficient
algorithms can be developed for discovery of interesting and
strong such rules in large databases.

Extension of methods for mining single-level knowledge
rules to multiple-level ones poses many interesting issues for
further investigation. For example, with the studies on mining
single-level sequential patterns [4], it is interesting to develop
efficient algorithms for mining multiple-level sequential pat-
terns. Also, with the generalization of mining associations to
mining correlations in large databases [5], mining multiple-level
correlations in databases is another interesting issue to be
studied in the future.
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