
Is Sampling Useful in Data Mining?

A Case in the Maintenance of Discovered Association Rules.

S.D. Lee David W. Cheung Ben Kao

Department of Computer Science,

The University of Hong Kong,

Hong Kong.

fsdlee,dcheung,kaog@cs.hku.hk

Abstract

By nature, sampling is an appealing technique for data mining, because approximate solutions in

most cases may already be of great satisfaction to the need of the users. We attempt to use sampling

techniques to address the problem of maintaining discovered association rules. Some studies have been

done on the problem of maintaining the discovered association rules when updates are made to the

database. All proposed methods must examine not only the changed part but also the unchanged part

in the original database, which is very large, and hence take much time. Worse yet, if the updates on

the rules are performed frequently on the database but the underlying rule set has not changed much,

then the e�ort could be mostly wasted. In this paper, we devise an algorithm which employs sampling

techniques to estimate the di�erence between the association rules in a database before and after the

database is updated. The estimated di�erence can be used to determine whether we should update the

mined association rules or not. If the estimated di�erence is small, then the rules in the original database

is still a good approximation to those in the updated database. Hence, we do not have to spend the

resources to update the rules. We can accumulate more updates before actually updating the rules,

thereby avoiding the overheads of updating the rules too frequently. Experimental results show that our

algorithm is very e�cient and highly accurate.

1 Introduction

Data mining has recently attracted considerable attention from database practitioners and researchers be-

cause of its applicability in many areas, such as decision support, market strategy and �nancial forecasts.

Combining techniques from the �elds of machine learning, statistics and databases, data mining enables us

to �nd out useful and invaluable information from huge databases.

Recent developments in technology have enabled many organizations to collect massive amounts of data

from bar-code labels, credit cards, OCRs, cash dispensers, etc. Meanwhile, the rapidly decreasing cost of

storage devices allows the storage of such databases at a low cost. These databases are now seen by the

organizations as valuable assets. Much new, previously unknown knowledge can be discovered from these

databases. Such new knowledge is very important because it enables marketers to develop and implement

customized marketing programs and strategies. To extract such new information from large databases is the

task of data mining.

1

Mining of association rules is a research topic that has received much attention among the various data

mining problems. Many interesting works have been published recently on this problem and its variations

[1{4,6,9,12{14]. Here, we give a classical example concerning the retail industry. Typically, a sales database

of a supermarket stores, for each transaction, all the items that are bought in that transaction, together with

other information such as the transaction time, customer-id, etc. The association rule mining problem is to

�nd out all the rules which have the form \A customer who buys item X and item Y is also likely to buy

item Z in the same transaction" from the sales database, where X , Y and Z are not known beforehand.

This problem was �rst introduced in [1] and subsequently many studies have been carried out on it.

Among the proposed algorithms for solving this problem, the Apriori algorithm [2] and the DHP algo-

rithm [13] are the most e�cient and successful. However, these algorithms examine the whole database in

order to discover the association rules exactly. A large amount of time has to be spent on examining the huge

database. In practice, a 100% correct mining result would not be much more useful than a 95% accurate

result, because the data are collected from real-world observations, in which random error is deemed to

be incurred. So, can we sacri�ce that 5% of accuracy for a higher mining speed? And if so, how? These

questions can be answered by sampling techniques [8, 10, 11, 15]. Studies have shown that by examining

a small

1

sample of the database, association rules can be discovered very e�ciently with reasonably high

accuracy and con�dence. The sampling methods are e�cient for two main reasons. First, they only examine

a small sample instead of the entire, huge database. Secondly, since the sample is small in size, it can often

�t entirely into main memory, thus reducing the I/O overhead of repeated database scanning.

Closely linked to the original mining problem is the association rule maintenance problem. For example,

a sales database is not a static one. From time to time, new records are appended to record new purchase

activities. Because of these update activities, the database keeps on changing. Consequently, new association

rules may appear in the database and at the same time, some existing association rules would become invalid.

We have to update the set of discovered association rules to re
ect the changes in the underlying database.

Thus, maintenance of discovered association rules is also an important problem.

The maintenance problem was �rst studied in [4], which proposed the FUP algorithm to �nd out new

association rules when new transactions are appended to the database. Another algorithm FUP2, proposed

in [5], is able to update the discovered association rules e�ciently when transactions are added to, deleted

from, or modi�ed in the database. As with Apriori and DHP, the FUP and FUP2 algorithms �nd exact

answers and they have to scan the old database several times. This hinders the performance of the database

system in responding to other queries. The high overhead in rule maintenance thus induces an important

problem of how often or when an update algorithm (such as FUP2) should be applied. As an extreme case,

if we apply FUP2 too often, such as after each single transaction is added to the database, we will cripple

the system to an extent that virtually no useful transactions can be executed. On the other hand, if we wait

to accumulate a large number of updates before applying FUP2 onto the batch, we take the risk of using

stale rules in between batch updates. Potentially harmful decisions might be made as a consequence. What

is needed and is missing here is a strategy to determine when the batch of transaction updates has created a

non-trivial distortion to the original set of association rules that a rule-update algorithm needs to be applied.

The goal of this paper is to discover such a strategy.

We would like to remark that simple general rules such as \update the rules when x% of the transactions

in the database have been changed" are hard to set and may not result in the best resource saving. The

reason is that the amount of transaction update activity does not directly indicate when a rule update is

warranted. It is the content of the update that counts.

1

with respect to the huge size of the entire database.

2

In this paper, we propose an algorithm DELI (Di�erence Estimation for Large Itemsets) to determine when

rule update should be applied. Instead of �nding out the new set of association rules, or an approximation, in

the updated database, the algorithm uses sampling techniques to estimate the maximum amount of changes

in the set of rules due to the newly added transactions. The estimate gives us an indication of when the

association rules need updating. If the estimate is small, then, so is the amount of changes in the original

set of association rules. So, the old set of rules is still a good approximation to the new set of rules. It is not

necessary to �nd out the new rules precisely. We simply wait until more changes are made to the database,

and then reapply the DELI algorithm. Only when the estimate becomes large do we need to apply FUP2

to refresh the set of rules. Our experimental results show that DELI gives a very good upper bound on the

amount of changes in the set of rules. Moreover, as we will see later in this paper, since DELI examines only

a small portion of the database, it is much more e�cient than FUP2. We thus can achieve great saving in

the database resources. The saving can be used on serving other database queries, thus greatly increases the

usability of the system.

In the remaining of this paper, a formal description of the problem is �rst given. Next, we brie
y go

through two previous algorithms, namely Apriori and FUP2, on which our new algorithm DELI is based.

Then, a detailed description of our new algorithm is given. Following that, we present our experiments for

studying the performance of DELI and the results are given. Comparisons with several other data mining

algorithms employing sample are made. Finally, we discuss about some future directions and then conclude

this paper.

2 Problem De�nitions

In this section we give formal de�nitions of the association rule mining problem, the rule maintenance

problem, and the rule-set-change estimation problem. These de�nitions will facilitate our description and

analysis of the DELI algorithm.

2.1 Mining of association rules

Let I = fi

1

; i

2

; : : : ; i

m

g be a set of literals (called items) and D be a database of transactions. Each

transaction T 2 D is a non-empty set of items (i.e. T 6= ; and T � I). Given an itemset X (i.e. X � I) and

a transaction T , we say that T contains X if and only if X � T . The support count of an itemset X , denoted

by �

X

, is de�ned to be the number of transactions in D that contain X . We say that an itemset X is large,

with respect to a user-speci�ed support threshold of s%, if �

X

� jDj � s%, where jDj is the total number of

transactions in the database D. An association rule is an implication of the form \X) Y ", where X � I ,

Y � I and X \ Y = ;. The association rule X) Y is said to hold in the database D with con�dence c% if

no less than c% of the transactions in D that contain X also contain Y . The rule X) Y has support &%

in D if �

X[Y

= jDj � &%. For a given pair of con�dence and support thresholds, the problem of mining

association rules is to �nd out all the association rules that have con�dence and support greater than the

corresponding thresholds. This problem has been shown to be reducible to the problem of �nding all large

itemsets for the same support threshold [1].

Thus, if s% is the given support threshold, the association rule mining problem is reduced to the problem

of �nding the set L = fX jX � I ^ �

X

� jDj � s%g. We call an itemset that contains exactly k items a

k-itemset and use the symbol L

k

to denote the set of all k-itemsets in L.

3

D

8

>

>

<

>

>

:

�

�

D

�

�

+

9

>

>

=

>

>

;

D

0

Figure 1: De�nitions of D, D

0

, �

�

, D

�

and �

+

database

support count

of itemset X

Large k-

itemsets

�

+

�

+

X

|

D

�

| |

�

�

�

�

X

|

D = �

�

[D

�

�

X

L

k

D

0

= D

�

[�

+

�

0

X

L

0

k

Table 1: De�nitions of several symbols

2.2 Update of association rules

After some update activities, old transactions are deleted from the database D and new transactions are

added. We can treat the modi�cation of existing transactions as deletion followed by insertion. So, without

loss of generality, we assume that there are no transaction modi�cations. All updates are either transaction

deletion or insertion. Let �

�

be the set of deleted transactions and �

+

be the set of newly added transactions.

We assume that �

�

� D. Denote the updated database by D

0

. Note that D

0

= (D ��

�

) [�

+

. We denote

the set of unchanged transactions by D

�

= D ��

�

= D

0

��

+

. The relationships between these data sets

are illustrated in Figure 1.

2

For consistency, we again use �

X

to denote the support count of itemset X in the original database D.

The set of large itemsets in D is L and L

k

is the set of k-itemsets in L. De�ne �

0

X

to be the new support

count of an itemset X in the updated database D

0

, and L

0

to be the set of large itemsets in D

0

. L

0

k

is the set

of k-itemsets in L

0

. We further de�ne �

+

X

to be the support count of itemset X in the database �

+

and �

�

X

to

be that of �

�

. These de�nitions are summarized in Table 1. We de�ne �

X

= �

+

X

� �

�

X

which is the change of

support count of itemset X as a result of the update activities. Thus, we have: �

0

X

= �

X

+�

+

X

��

�

X

= �

X

+�

X

.

For the update problem, L and �

X

8X 2 L are information available as the result of a previous mining

operation done on the old database D. Thus, the update problem is to �nd L

0

and �

0

X

8X 2 L

0

e�ciently,

given the knowledge of D, D

0

, �

�

, D

�

, �

+

, L and �

X

8X 2 L.

2.3 Finding an upper bound on the size of the di�erence between the old and

new association rules

Before actually doing the update to �nd L

0

and �

0

X

8X 2 L

0

, we want to know something about the size

of the di�erence between L and L

0

. If the di�erence is small, then we do not update the set of association

rules, but instead wait for more updates to come. If, however, the di�erence is larger than a given threshold,

then enough updates have been accumulated and a rule update operation is necessary. To do this, we have

2

Since the ordering of the transactions within the data sets does not a�ect the results of the association rule mining problem,

we have moved the deleted transactions to the top and newly added transactions to the bottom for illustration purpose.

4

to de�ne a measure for the di�erence between L and L

0

.

But how should we measure the amount of changes in the set of association rules? Does it increase

with the number of updates to the database? The answer is no. If the new transactions follow the same

association rule patterns as the old database, then both the old and new database would exhibit the same

association rules. In this case, however numerous the updates are, few useful new association rules will be

found. An alternative would be to �nd out the new set of association rules in the updated database, and

then compare it with the old set of rules to �nd out their set symmetric di�erence. The size of the symmetric

di�erence is of course a good indicator for the necessity to discover the new set of association rules.

We use the notation L	 L

0

to denote the symmetric di�erence between L and L

0

. Note that

L	 L

0

= L

0

	 L = (L

0

� L) [(L� L

0

)

Depending on the similarity between L and L

0

, the size of L	L

0

can vary between zero and jLj+ jL

0

j. It is

zero when L = L

0

and it is jLj+ jL

0

j when L and L

0

are disjoint. The smaller the size of L	L

0

, the greater

is the similarity between L and L

0

.

Note, however, that calculating the symmetric di�erence, or even just its size, requires us to �nd out

the new set of association rules �rst, and this operation is itself expensive. So, instead of computing the

symmetric di�erence exactly, we estimate its size by examining samples of the database.

It is clear that the ratio

jL	L

0

j

jLj+jL

0

j

can be used as a normalized measurement of the di�erence between L

and L

0

. Its value varies between 0 and 1 and hence is more convenient when one needs to specify a threshold

for this ratio. Unfortunately, the term jL

0

j appears in the denominator, which we do not know; therefore,

we cannot calculate the above ratio. So, we use the ratio

jL	L

0

j

jLj

instead. We use this as a di�erence measure

for the old and new large itemsets. Since L is known to us from the results of the last mining, it remains to

estimate the value of jL	 L

0

j.

In this paper, instead of �nding an accurate value for jL	L

0

j, we take the approach to �nd an approximate

upper bound on this value. The bound is approximate, but there should be little

3

chance that the amount of

changes in the set of association rules is larger than the bound. So, the estimation problem is to e�ciently

estimate the size jL	L

0

j without �nding out L

0

, given the knowledge ofD, D

0

, �

�

, D

�

, �

+

, L and �

X

8X 2 L.

3 Related Works

In this section, we brie
y describe two previous algorithms that are related to our work. For details, the

reader is referred to the corresponding references.

3.1 The Apriori Algorithm

The original problem of mining association rules (see Section 2.1) was �rst posed in [1]. The Apriori

algorithm [2] is one of the most successful algorithms designed for solving the problem.

The Apriori algorithm �nds out the large itemsets iteratively. In the k-th iteration, it �nds out L

k

, i.e.

the set of all large itemset of size k. To do this, in each iteration the algorithm �rst generates a set of

candidate itemsets of size k, denoted by C

k

. For the �rst iteration, C

1

contains all the 1-itemsets. For the

subsequent iterations, C

k

is generated by applying the apriori gen function [2] on the set L

k�1

, i.e. the

set of all large (k� 1)-itemsets, which have been found in the previous iteration. The apriori gen function

generates all those k-itemsets X satisfying the condition that all the size (k � 1) subsets of X are large

3

w.r.t. the level of con�dence.

5

jDj = 10

6

j�

�

j = 9000 j�

+

j = 10000 s% = 2%

X �

X

�

�

X

�

+

X

�

0

X

in L? in L

0

?

A 24803 497 512 24818 Yes Yes

B 31305 690 823 31438 Yes Yes

C 24323 760 847 24410 Yes Yes

D 27887 192 185 27880 Yes Yes

E 21208 503 496 21201 Yes Yes

F 19887 120 137 19904 No No

AB 23766 80 99 23785 Yes Yes

AC 22302 92 98 22308 Yes Yes

AD 21188 113 135 21210 Yes Yes

AE 20100 194 103 20009 Yes No

BC 22321 108 137 22350 Yes Yes

BD 25086 172 153 25067 Yes Yes

BE 19803 202 436 20037 No Yes

CD 23847 125 152 23874 Yes Yes

CE 14467 480 438 14425 No No

DE 16782 168 152 16766 No No

ABC 21033 79 96 21050 Yes Yes

ABD 13744 58 90 13776 No No

ACD 20387 85 96 20398 Yes Yes

BCD 20211 87 120 20244 Yes Yes

Table 2: Support counts for the examples

(i.e. 2 L

k�1

). Since this is a necessary condition for a k-itemset to be large [2], the apriori gen function

guarantees that all large k-itemsets are included in C

k

, i.e. C

k

� L

k

. Having found the set of candidates C

k

,

Apriori scans the database D in order to obtain the support counts �

X

for all X 2 C

k

. Next, all candidates

X 2 C

k

with support count �

X

� jDj � s% are added to the set L

k

. Thus L

k

is found. This completes one

iteration. The iterations go on until L

j

is empty for some j. The set of all large itemsets L is then the union

S

1�k<j

L

k

. The key success of the Apriori algorithm lies in its use of the apriori gen function to generate

a small number of candidate itemsets.

Let us illustrate this algorithm with an example. Suppose we have a database D of 10

6

transactions with

I = fA, B, C, D, E , Fg. Let us use a support count of 2%. Suppose the relevant support counts, which are

unknown to us before we run Apriori, are as shown in Table 2. To �nd out the large itemsets in D, Apriori

�rst generates the candidate set C

1

= fA, B, C, D, E , Fg.

4

Then, it scans D to obtain the support counts

of the itemsets in C

1

. The counts are shown in Table 2. Next, Apriori �nds that �

F

< jDj � s% = 20000.

So, F is not large. All other candidates are large. So, L

1

= fA, B, C, D, Eg. In the second iteration, Apriori

computes C

2

= apriori gen(L

1

) = fAB, AC, AD, AE , BC, BD, BE , CD, CE , DEg. Then, D is scanned

to obtain the support counts of these itemsets. The resulting support counts are shown in Table 2. So, we

have L

2

= fAB, AC, AD, AE , BC, BD, CDg. In the third iteration, C

3

= apriori gen(L

2

) = fABC, ABD,

4

We will write \ABC" for the itemset fA,B,Cg when no ambiguity arises.

6

ACD, BCDg. Apriori scans D and the support counts given in the table. Thus, L

3

= fABC, ACD, BCDg.

Next, Apriori �nds out that C

4

= apriori gen(L

3

) = ;. So, the algorithm terminates and we have L = fA,

B, C, D, E , AB, AC, AD, AE , BC, BD, CD, ABC, ACD, BCDg. The large itemsets and their support counts

in D are thus found.

3.2 The FUP2 algorithm

The FUP2 algorithm [5] was designed to address the maintenance problem, formulated in section 2.2. Suppose

that the association rules of an existing database has already been mined, and that after the mining, some

updates have been performed on the database. To �nd out the new association rules L

0

in the updated

database D

0

, one approach is to apply the Apriori algorithm to the updated database D

0

. However, this

method is not e�cient, because it fails to reuse the results of the previous mining. Thus, the FUP2 algorithm

was introduced. FUP2 makes use of the results of the previous mining to reduce the amount of work that

needs to be done. FUP2 also improves performance by generating a smaller number of candidate itemsets.

It works more e�ciently.

The FUP2 algorithm works as follows. Like Apriori, it generates the large itemsets iteratively. In the k-th

iteration, it �rst generates a set of candidate itemsets C

k

for the updated database D

0

. For the �rst iteration,

C

1

is again the set of all 1-itemsets. In the subsequent iterations, C

k

is generated by applying apriori gen

on L

0

k�1

, the new large itemsets (w.r.t D

0

) found in the previous iteration. The properties of apriori gen

guarantees that C

k

� L

0

k

. Next, C

k

is divided into two partitions: P

k

= C

k

\ L

k

and Q

k

= C

k

� P

k

. Note

that L

k

is available from the results of the last mining, and so are �

X

8X 2 L

k

.

The candidates in the two partitions of C

k

are handled di�erently. For X 2 P

k

� L

k

, we know the old

support count �

X

from the old mining results. So, we can scan �

+

and �

�

to �nd out �

X

and hence calculate

the new support count �

0

X

= �

X

+ �

X

. If this is greater than or equal to jD

0

j � s%, then X is large, and

hence it is added to the set L

0

k

. For each candidate X 2 Q

k

, we do not know its old support count �

X

, but

we know that �

X

< jDj � s%. So, such a candidate can be large only if �

X

> (j�

+

j � j�

�

j)� s%, according

to Lemma 4 in [5]. Hence, in the scan of �

+

and �

�

, we can obtain also the counts �

X

for the candidates

X 2 Q

k

. Then, we prune away from Q

k

those candidates with �

X

� (j�

+

j � j�

�

j)� s%. For the remaining

candidates X 2 Q

k

, we scan the unchanged transactions D

�

to �nd out their counts there, and then add

this count to �

+

X

to get �

0

X

. Those with �

0

X

� jD

0

j � s% are added to L

0

k

. As a result, all the candidates in

C

k

= P

k

[Q

k

can be handled, and the candidates that are large in D

0

are added to L

0

k

. Hence an iteration

is completed, and the algorithm proceeds to the next iteration unless L

0

k

is empty.

Let us trace how the algorithm works with an example continued from Section 3.1. Suppose 9000 original

transactions in D are deleted (j�

�

j=9000) and 10000 new transactions are added (j�

+

j=10000). Please

refer to Table 2 for the corresponding support counts in �

+

and �

�

. In the �rst iteration, P

1

= fA, B, C,

D, Eg and Q

1

= fFg. FUP2 scans the new transactions �

+

and deleted transactions �

�

to �nd out the

counts �

+

X

and �

�

X

, respectively, for all X 2 P

1

[Q

1

. For every itemset X 2 P

1

, FUP2 retrieves the old

support count �

X

from the previous mining result, and calculate the counts �

0

X

. All of them are large. So,

they all go to L

0

1

. For F 2 Q

1

, since it was not large in the database D, we know that its new count is at

most 20000 + �

+

F

� �

�

F

= 20017 < jD

0

j � s% = 20020. Therefore, F cannot be large, and it is pruned away

from Q

1

5

. Thus, L

0

1

= fA; B, C, D, Eg. In the second iteration, P

2

= fAB, AC, AD, AE , BC, BD, CDg and

Q

2

= fBE , CE , DEg. Next, FUP2 scans �

+

and �

�

to �nd �

+

X

and �

�

X

for all X 2 C

2

. For those X 2 P

2

,

5

The FUP2 algorithm actually checks whether �

+

F

� �

�

F

� (j�

+

j � j�

�

j)� s%. Since F satis�es this condition, it is pruned

away.

7

FUP2 retrieves �

X

from the previous mining results and calculates �

0

X

. The itemsets AB, AC, AD, BC, BD,

and CD are large. AE is no longer large in D

0

. For CE 2 Q

2

, since �

+

CE

��

�

CE

= �42 � (j�

+

j�j�

�

)�s% = 20,

it cannot be large. It is pruned away from Q

2

. DE 2 Q

2

is also pruned away for the same reason. For the

remaining candidate BE in Q

2

, FUP2 scans D

�

to obtain its old support count �

BE

. Next, FUP2 computes

the new count �

0

BE

= 20037 � 20020 = jD

0

j � s%. So, BE is large. Thus L

0

2

= fAB, AC, AD, BC, BD, BE ,

CDg. In the third iteration, P

3

= fABC, ACD, BCDg and Q

3

= fABDg. FUP2 scans �

+

and �

�

to �nd �

+

X

and �

�

X

for these candidates. The counts are as shown in Table 2. FUP2 calculates the new support counts

of the itemsets in P

3

and �nds that all of them are still large in D

0

. For itemset ABD in Q

3

, FUP2 scans D

�

to �nd out its old support count �

ABD

. The new support count �

0

ABD

is then calculated. It is found to

be not large in D

0

. Therefore, L

0

3

= fABC, ACD, BCDg. In the next iteration C

4

= ;. So, the algorithm

terminates. The result is L

0

= fA, B, C, D, E , AB, AC, AD, BC, BD, BE , CD, ABC, ACD, BCDg. The old

large itemset AE is now obsolete and we have found a new large itemsets BE .

4 The DELI algorithm

The FUP2 algorithm is an e�cient way of maintaining an accurate set of association rules. Unfortunately,

accuracy has its price. FUP2 still has to rescan the old database several times in order to obtain the support

counts of new large itemsets. In this section, we present the DELI algorithm, which applies a sampling

technique to estimate the support counts and then gives an approximate upper bound on how much changes

in the set of association rules are introduced by the new transactions. If the changes are not signi�cant, we

can ignore them and wait until more are accumulated, contenting with the old set as a good approximation.

4.1 Drawing a random sample

Consider the original database D and an arbitrary itemset X � I . Since exactly �

X

of the jDj transactions

in the database contain X (by the de�nition of �

X

), the probability that a transaction randomly selected

6

from D contains X is p

X

=

�

X

jDj

.

Now, suppose we randomly draw m transactions from the database D with replacement to form a

sample S. Each transaction is drawn independently. As a result, each transaction in S has a probability of

p

X

of containing the itemset X . Let the total number of transactions in S containing X be T

X

(i.e. T

X

is the

support count of X in S.). Then T

X

is a binomially distributed random variable with parameters m and p

X

.

With m su�ciently large (� 30), T

X

can be approximated by a normal distribution with mean m � p

X

and

variance m � p

X

(1 � p

X

). [16] We can estimate the value of �

X

by the point estimator c�

X

=

T

X

m

� jDj. This

is an unbiased estimator because c�

X

is normally distributed with mean m � p

X

�

jDj

m

= �

X

. Its variance is

m � p

X

(1� p

X

) � (

jDj

m

)

2

= �

X

(jDj � �

X

)=m. Thus we can obtain a 100(1��)% con�dence interval [a

X

; b

X

] for

�

X

where

a

X

= c�

X

� z

�=2

q

b�

X

(jDj� b�

X

)

m

b

X

= c�

X

+ z

�=2

q

b�

X

(jDj� b�

X

)

m

(1)

and z

�=2

is the critical value such that the area under the standard normal curve beyond z

�=2

is exactly �=2.

7

The value of � is chosen by the user. Typical values of z

�=2

are 1.645 (for � = 0:10), 1.960 (for � = 0:05)

6

Each transaction in D is selected with equal probability.

7

In other words, z

�=2

is the value such that the probability that a normally distributed random variable with zero mean

and unit variance exceeds z

�=2

is �=2. i.e. Pr(Z > z

�=2

) = �=2.

8

and 2.576 (for � = 0:01). The 100(1� �)% con�dence interval for �

X

has the property that

Pr(�

X

2 [a

X

; b

X

]) = 100(1� �)%

This means that there is 100(1� �)% chance that the actual value of �

X

lies within the interval [a

X

; b

X

]. In

the above derivations, X is an arbitrary itemset. So, the above result generalizes to any itemset X � I .

We have seen how an estimate (c�

X

) of �

X

can be obtained from a sample. Next, we will see how the

con�dence interval [a

X

; b

X

] is employed. For e�ciency, we will use the same sample S for every iteration of

the algorithm. The sample S is drawn from the original database D as a part of the initialization of the

algorithm. After this initialization, we do not need to scan D at all. Thus, the algorithm scans the old

database D only once, so as to extract a sample.

4.2 Determining the sample size

In Section 4.1, we derived that for a sample S of size m, the 100(1� �)% con�dence interval for �

X

is

c�

X

� z

�=2

r

c�

X

(jDj � c�

X

)

m

So, the width of this interval is 2z

�=2

q

b�

X

(jDj� b�

X

)

m

. This value gives us a guideline for choosing a suitable

size of m.

As we have shown above, the DELI algorithm uses the con�dence interval to estimate �

X

only when X

is not large in the original database D (see Section 4.3). So, for such X , �

X

< jDj � s%. This gives an

upper bound on the possible values of �

X

when we do the estimation. Practical values for s is much less

than 50. So, we can assume that jDj� s% <

jDj

2

. Now, observe also that the function f(c�

X

) = c�

X

(jDj�c�

X

)

is a quadratic polynomial in c�

X

. It is increasing in the interval (�1;

jDj

2

) but decreasing in (

jDj

2

;1). For

practical values of s, c�

X

� �

X

2 [0; jDj � s%] � (�1;

jDj

2

). Since the function f(x) is increasing in this

range, it is bounded above by f(jDj � s%) = jDj

2

s%(1� s%) for the practical range of s. Hence, the widths

of all our con�dence intervals are no more than

2z

�=2

r

jDj

2

s%(1� s%)

m

= 2jDjz

�=2

r

s%(1� s%)

m

From this bound, it is obvious that the greater the size of the sample, the narrower the con�dence intervals

are, and hence the more accurate our estimates are. We can vary the sample size m to control the maximum

width of the intervals. For example, suppose that we want the widths of the intervals not to exceed

jDj�s%

5

.

We can establish the inequality

2jDjz

�=2

r

s%(1� s%)

m

�

jDj � s%

5

and solve it to get a minimum value for m. For example, if s = 2 and � = 0:05, then z

�=2

= 1:96 and

solving the above inequality gives m � 18823:84. Note that this value is independent of the size of the

database D. So, while D may contain billions of transactions, a sample of around 19 thousand transactions

is large enough to give the accuracy desired in this example.

4.3 Giving an approximate upper bound on the amount of changes in large

itemsets

The DELI algorithm is also an iterative algorithm, like Apriori and FUP2. In the k-th iteration, the algorithm

�rst generates a set C

k

of candidate itemsets. For the �rst iteration, C

1

is the set of 1-itemsets. For

9

P

k

L

k

L

0

k

C

k

Q

k

L

(�)

k

Figure 2: The relationship between various sets of itemsets

subsequent iterations (k � 2), C

k

is calculated by applying the apriori gen function [2] on the set

d

L

k�1

calculated in the previous iteration as described below. Note that

d

L

k�1

is an approximation of L

0

k�1

;

therefore, the candidate set C

k

so generated may not cover all the itemsets in L

0

k

. However, we will see later

in this section that statistically, misses are rare and the itemsets missed by the approximation

d

L

k�1

most

likely have very small support counts. Hence, candidates generated by them are unlikely to be large. This

is supported by our experimental results (see Section 5). Therefore, C

k

should cover most of the itemsets

in L

0

k

, and the missed ones are unimportant (in the sense that they have low support counts). On the other

hand, there may be false hits in

d

L

k�1

, but they would not generate too many false candidates in C

k

, and

even if they do so, the resulting false candidates are very likely to be pruned away in the subsequent steps

because of their small support counts.

After its generation, the set C

k

is partitioned in the same way as in FUP2: P

k

= C

k

\L

k

andQ

k

= C

k

�P

k

.

This is illustrated in Figure 2. Thus, P

k

contains all the candidates that were large in the old database,

while Q

k

contains those that were not large. Candidates in these two partitions are treated di�erently. For

each itemset X 2 P

k

, its old support count �

X

in the old database can be retrieved from the previous mining

results. Then, we �nd out �

+

X

and �

�

X

by scanning the updates �

+

and �

�

. Thus, the new support count

�

0

X

can be calculated. Those itemsets X with �

0

X

� jD

0

j � s% are large in the updated database. We add

them to a set L

(�)

k

.

8

Note that the itemsets Y 2 (L

k

� C

k

) [(P

k

� L

(�)

k

) = L

k

� L

0

k

are those that were

large in the old database but not large in the new database (refer to Figure 2). We calculate the number

of such itemsets and denote this number by �

k

. The value of �

k

will be used in computing the size of the

symmetric di�erence L	 L

0

(see Section 2.3).

For the candidates X in Q

k

(i.e. those that were not large in the old database D), we do not know �

X

.

However, we do know that �

X

< jDj� s%. We can apply the technique mentioned in [5] to prune away some

candidates. We �rst �nd out �

X

during the scan of the updates �

+

and �

�

. Then, we are able to prune away

some of the candidates before going on. This is because according to Lemma 4 in [5], if �

X

� (j�

+

j�j�

�

j)�s%,

we have the new support count ofX in the new database, �

0

X

= �

X

+�

X

< (jDj+j�

+

j�j�

�

j)�s% = jD

0

j�s%

and hence X cannot be large in D

0

. So, none of the itemsets X 2 Q

k

satisfying �

X

� (j�

+

j � j�

�

j) � s%

can be large. They can be safely pruned away from Q

k

. For each of the remaining candidates X in Q

k

,

we scan the sample S and use the method as described in Section 4.1 to �nd out a 100(1� �)% con�dence

interval [a

X

; b

X

] for �

X

. This corresponds to the interval [a

X

+ �

X

; b

X

+ �

X

] for �

0

X

. Since the criterion for

8

The superscript (�) indicates that the support counts of the itemsets in L

(�)

k

are certainly larger than the threshold

jD

0

j � s%.

10

being \large" is �

0

X

� jD

0

j � s%, we compare this threshold value with the interval for �

0

X

. There are 3

possibilities:

1. If jD

0

j � s% < a

X

+ �

X

, the support threshold is below X 's support count's con�dence interval. In this

case, we are very con�dent (to 100(1��)%) that X is large in the new database D

0

. We add X to the

set L

(>)

k

. (The set L

(>)

k

thus contains all the itemsets that were originally not large in D but are most

probably large in the new database D

0

.)

2. If a

X

+ �

X

� jD

0

j � s% � b

X

+ �

X

, the support threshold lies within X 's support count's con�dence

interval. In this case, we are not sure if X is large or not in D

0

. However, even if X is not large in D

0

,

since its support count is close to the threshold, we can say that X is almost large in D

0

. We add X to

the set L

(�)

k

. (The set L

(�)

k

thus contains all the itemsets that were originally not large but are either

large or are close to be large in the new database D

0

.)

3. If b

X

+�

X

< jD

0

j�s%, i.e., the support threshold is above the con�dence interval, we are very con�dent

(to 100(1� �)%) that X is not large in D

0

. We simply drop these candidates.

After all the candidates in Q

k

are handled as described above, we calculate the value �

k

=

�

�

�

L

(>)

k

�

�

�

+

�

�

�

L

(�)

k

�

�

�

.

Note that an itemset in L

0

k

� L

k

(i.e., it was originally not large but becomes large in the new database)

would be captured into either the set L

(>)

k

or the set L

(�)

k

with a very high probability. As our experiment

results show (see Section 5), misses are very rare. Moreover, L

(�)

k

also captures a few itemsets that are not

large (but are almost large) in D

0

(false hits). It is thus reasonable to use �

k

as an upper bound of jL

0

k

�L

k

j.

Similar to �

k

, we will use �

k

to estimate the size of the symmetric di�erence L

k

	 L

0

k

.

To complete the k-th iteration of the algorithm, we set

c

L

k

, the set that approximates the real set of large

k-itemsets (L

0

k

) as

c

L

k

= L

(�)

k

[L

(>)

k

[L

(�)

k

. The set

c

L

k

should contain most of the large itemsets in L

0

k

, plus

a few non-large itemsets that are almost large. Experimental results (see Section 5) reveal that the size of

L

(�)

k

is usually very small. So, the number of false hits is very small. As we have argued, and will be shown

in our experimental results, the number of large itemsets in L

0

k

that are missing in

c

L

k

is even smaller.

c

L

k

is

thus a good approximation to L

0

k

.

After we complete the k-th iteration, we will check whether we should continue with the (k + 1)-th

iteration. Three criteria are considered.

The �rst criterion is the degree of uncertainty that is introduced by our estimation of �

X

with the

con�dence interval [a

X

; b

X

] for the candidates in Q

k

. As we have discussed, itemsets collected in L

(�)

k

may

or may not be large in D

0

. Adding them to

c

L

k

introduces potential error (and thus uncertainty) in our

estimations. The higher this uncertainty is, the less reliable is the result. To measure this uncertainty, we

compare the uncertainty factor u

k

=

�

�

L

(�)

k

�

�

�

�

b

L

k

�

�

against a user-speci�ed threshold u. If u

k

� u, then the amount

of uncertainty introduced in this iteration is too much for DELI to reliably generate the candidates for the

next iteration. So, we declare that a good estimation cannot be made and DELI stops. We resort to FUP2

to do an accurate update.

The second criterion is the amount of changes in the set of large itemsets caused by �

�

and �

+

|the

changes to the original database D. As mentioned in Section 2.3, we examine the symmetric di�erence

L	L

0

. Note that the value of �

k

found above gives the exact size of L

k

�L

0

k

and the value of �

k

is a reliable

approximate \upper bound" on the size of L

0

k

� L

k

. So, the value of �

k

+ �

k

is an approximate \upper

bound" on jL

k

	L

0

k

j = jL

k

�L

0

k

j+ jL

0

k

�L

k

j. To determine whether this bound is so large that we need to

discover the new set of association rules, we test the ratio d

k

=

P

k

j=1

(�

j

+ �

j

)=jLj against a user-speci�ed

11

threshold d. If this threshold is exceeded, then the set of old large itemsets are so di�erent from the set of

new large itemsets that an accurate update is necessary. So, FUP2 should be invoked and DELI terminates.

The third criterion is basically the same as the termination condition of Apriori and FUP2. We check if

c

L

k

is empty. If not, the algorithm continues with the next iteration. If it is empty, the algorithm terminates.

Note that if the algorithm is terminated by this criterion, the values of u

k

and d

k

would not have exceeded

their thresholds, since u

k

< u ^ d

k

< d 8k. So, we can conclude with high certainty, that the set of large

itemsets in the new database is not too di�erent from that in the old database. Hence, it is acceptable to

take the set of large itemsets of the old database D as an approximation to that of the updated database D

0

.

Below is a summary of the DELI algorithm.

Algorithm: DELI

Inputs: I , D, D

�

, �

+

, �

�

, s%, L, �

X

8X 2 L, m, z

�=2

, u, d.

Output: a Boolean value indicating whether a rule-update operation is needed.

Requires: the apriori gen function.

1. Obtain a random sample S of size m from the original database D. Set k = 1.

2. Generate a candidate set C

k

. For k = 1, C

1

= I . For k � 2, C

k

= apriori gen(

d

L

k�1

).

3. Divide C

k

into 2 parts: P

k

= C

k

\ L

k

and Q

k

= C

k

� P

k

.

4. Scan �

+

and �

�

to obtain �

X

for all X 2 C

k

.

5. For each X 2 P

k

, retrieve �

X

from the results of the previous mining operation. Then, calculate

�

0

X

= �

X

+ �

X

. If �

0

X

� jD

0

j � s%, add X to L

(�)

k

.

6. Calculate �

k

= jL

k

� C

k

j+ jP

k

� L

(�)

k

j.

7. For each X 2 Q

k

, if �

X

� (j�

+

j � j�

�

j)� s%, delete it from Q

k

.

8. For the remaining X 2 Q

k

, obtain a 100(1��)% con�dence interval [a

X

; b

X

] for �

X

by examining

the sample S. Then, check the following conditions for X :

(a) If jD

0

j � s% < a

X

+ �

X

, add X to L

(>)

k

.

(b) If a

X

+ �

X

� jD

0

j � s% � b

X

+ �

X

, add X to L

(�)

k

.

(c) If b

X

+ �

X

< jD

0

j � s%, drop X .

9. Calculate �

k

=

�

�

�

L

(>)

k

�

�

�

+

�

�

�

L

(�)

k

�

�

�

.

10. Let

c

L

k

= L

(�)

k

[L

(>)

k

[L

(�)

k

.

11. If u

k

=

�

�

L

(�)

k

�

�

�

�

b

L

k

�

�

� u, signal the need for a rule-update operation and then halt.

12. If d

k

=

P

k

j=1

(�

j

+ �

j

)=jLj � d, signal the need for a rule-update operation and then halt.

13. If

c

L

k

is non-empty, increment k and goto step 2. Otherwise, conclude that L � L

0

and hence use

L as an approximation for L

0

and halt.

Note that the DELI algorithm scans the original database D only once, in order to pick a sample S. The

size of the sample should be small enough so that it �ts in main memory. Thereafter, the algorithm only

examines the updates �

+

and �

�

, whose sizes should be small in practice. So, the DELI algorithm has very

little I/O overhead. The algorithm takes I , D

�

, �

+

, �

�

, s%, L, �

X

8X 2 L, m, z

�=2

, u and d as input, and

generates the Boolean output of whether the new association rules need to be discovered. If the algorithm

reports that it is necessary, then we can use the FUP2 algorithm to �nd out the new rules. Otherwise, we

can take L as an approximation of L

0

. In this latter case, we have run DELI instead of FUP2. Since running

DELI is less expensive than running FUP2, as revealed by our experimental results, we have saved machine

resources.

12

4.4 An improvement

We can increase the accuracy of estimation and the performance of DELI by storing the support counts of all

1-itemsets, i.e. �

X

8X 2 I . If these counts are stored during a previous mining, then in the �rst iteration

of DELI, we need not estimate the values of �

X

. Instead, these counts can be retrieved. Then, DELI can

�nd out the counts �

0

X

accurately for all 1-itemsets X without scanning the database D or the sample S.

Consequently, L

0

1

can be accurately determined and hence C

2

will include all itemsets in L

0

2

. This can further

increase the accuracy of the estimations in iteration 2. The only extra cost is the extra storage, which has

a size of O(jI j). This is both a�ordable and scalable.

4.5 An example

Let us illustrate the DELI algorithm with an example continued from Section 3.2. The support counts

are again as shown in Table 2. Suppose that we use a sample size m = 10000 and we set � = 0:05, i.e.

z

�=2

= 1:96. We set the thresholds u = d =

1

5

. Suppose also that the support counts of the 1-itemsets in D

have been stored as described in Section 4.4.

In the �rst iteration, we have C

1

= fA, B, C, D, E , Fg. Since the old support counts are all stored, we

can directly retrieve them and update them by scanning �

�

and �

+

. So, we can �nd the new set of large

itemsets L

0

1

= fA, B, C, D, Eg. We assign

c

L

1

= L

0

1

. Since no approximations are made in this iteration, we

have u

1

= 0. Moreover, since L

1

= L

0

1

, we have �

1

= �

1

= 0 and hence d

1

= 0. Further,

c

L

1

is non-empty.

So, the algorithm goes on with the second iteration.

In the second iteration, C

2

is generated from

c

L

1

. It contains those ten 2-itemsets shown in Table 2.

After partitioning, we have P

2

= fAB, AC, AD, AE , BC, BD, CDg and Q

2

= fBE , CE , DEg. For the

itemsets in P

2

, the stored old support counts are retrieved and updated against �

�

and �

+

. Of these

seven itemsets, AE is no longer large, because �

0

AE

= 20009 < 20020 = jD

0

j � s%. All the other six are

still large and hence they are put into L

(�)

2

. Therefore, L

(�)

2

= fAB, AC, AD, BC, BD, CDg and thus

�

2

= 1. For the itemsets in Q

2

, CE and DE are pruned, because �

+

CE

� �

�

CE

= �42 � (j�

+

j � j�

�

j)� s% and

�

+

DE

� �

�

DE

= �16 � (j�

+

j � j�

�

j) � s%. The itemset BE , however, is not pruned away. So, we examine S

for this itemset. Suppose the support count of BE in S is 202. Then, d�

BE

= 20200 and hence according

to equations 1, the 95% con�dence interval for �

BE

is 20200� 2757. Since �

+

BE

= 436 and �

�

BE

= 202, the

corresponding con�dence interval for �

0

BE

is [17677; 23191]. As 20020 = jD

0

j � s% falls within this interval,

BE is inserted into L

(�)

2

. L

(>)

2

remains empty. Thus, �

2

= 1. We have

c

L

2

= fAB, AC, AD, BC, BD, BE ,

CDg. Since u

2

=

1

7

<

1

5

= u and d

2

=

2

15

<

1

5

= d, the algorithm continues into the third iteration.

In the third iteration, P

3

= fABC, ACD, BCDg and Q

3

= fABDg. The old support counts for the

itemsets in P

3

are again retrieved and then updated against �

�

and �

+

. All of them remain large and hence

are inserted into L

(�)

3

. So, L

(�)

3

= P

3

and �

3

= 0. For the itemset ABD in Q

3

, we obtain its count in the

sample S. Suppose the values is 155. Then, we get the interval [13111; 17953] for �

0

ABD

. The interval is

below 20020 and hence ABD is dropped. This gives L

(�)

3

= L

(>)

3

= ;, �

3

= 0 and

c

L

3

= P

3

. Thus u

3

= 0 < u

and d

3

=

2

15

< d. So, the algorithm continues into iteration 4. However, C

4

= apriori gen(

c

L

3

) = ;. As a

result, DELI terminates and concludes that L � L

0

. So, we can con�dently use L as an approximation of L

0

.

Note that in our example, the values of u

k

have remained very small. So, the estimations are quite

reliable. Moreover, comparing the estimations

c

L

k

to the actual sets L

0

k

(which are not accurately found by

DELI), we can note that they are the same. So, although DELI is doing approximations, it can yield results

quite close to the actual answer. By using the sample S, we have avoided repeated scanning of the unchanged

transactions D

�

. We only have to scan D once in order to collect the sample S.

13

5 Experimental Results

To assess the performance of DELI, we have implemented the algorithms Apriori, FUP2 and DELI on an

RS/6000 workstation (model 410) running AIX. The improvement described in Section 4.4 has been incor-

porated into our implementation of DELI. We have done a series of experiments to study the performance

of the new algorithm and compare its performance with the other algorithms.

In the experiments, we follow the approach in [2, 5, 12] and use synthetic data as the input databases to

the algorithms. We will brie
y explain the data generation method in Section 5.1. In each experiment, we

�rst generate the required transaction databases D, �

+

and �

�

. Then, we use Apriori to �nd out the large

itemsets L. Next, FUP2 is invoked to �nd out L

0

, and the time taken is noted. After that, we run the DELI

algorithm, and note the time taken. For experimental purpose, we have set the thresholds u and d to in�nity.

This is to \switch o�" the �rst two termination criteria and hence make the algorithm always terminate by

the third criterion. Then, the maximum values of u

k

and d

k

are noted. We denote these maximum values by

u

c

and d

c

, respectively. Note that if we had set the threshold u to any value above u

c

, then it would never

be exceeded by any u

k

because u

c

is the maximum value of u

k

8k. However, if we had set the threshold u

to any value below or equal to u

c

, then there would be at least one u

k

� u. In that case, DELI would signal

a need for an update, because of the �rst criterion. So, u

c

is the critical value for the threshold u. If the

threshold is set above the critical value, the uncertainty factors u

k

will not trigger the signal for update. If

the threshold is below the critical value, the uncertainty factors will trigger the signal. A similar relationship

holds for d and d

c

. Thus, it is much more useful to examine the critical values u

c

and d

c

rather than the

Boolean output of DELI.

For each of the experiment, we compare the value of d

c

, which gives an approximate upper bound

on

jL	L

0

j

jLj

, against the actual value of

jL	L

0

j

jLj

, which is calculated by comparing L with L

0

. We give the ratio

of the former value to the latter. This is an indication of how good DELI's bounds are. The closer to 1 this

ratio, the better the bounds. However, since the d

k

's are approximate upper bounds on

jL	L

0

j

jLj

, we expect

the ratio to be above 1 most of the time. A value of the order of magnitude of 1 is acceptable for d

c

. A

value of d

c

closer to unity is of course more favourable. The value of u

c

, on the other hand, gives us the

level of uncertainty of DELI's estimations. Since u

c

is the maximum value of the uncertainty factors u

k

over

all iterations, it bounds the factors from above. The smaller this critical value, the smaller the amount of

uncertain information that DELI is relying on (because u

k

is directly proportional the size of the uncertain

set L

(�)

k

) and hence the more reliable DELI's conclusion (on whether FUP2 should be invoked) is. The

algorithm guarantees that the need for a rule-update operation is signaled when the uncertainty factor of

any iteration exceeds the threshold u.

In addition, we compare the time taken by FUP2 against the time taken by DELI in each experiment.

The ratio of the former to the latter is plotted. We call this the \speedup" ratio because it measures how

much faster DELI is. Note that the time taken by DELI in our experiments is the maximum time taken for

the same experimental settings, with the maximum taken over all possible threshold values of u and d. This

is because for other threshold values, the algorithm may be terminated by the �rst or the second criterion,

causing the algorithm to stop earlier. So, for practical values of u and d, DELI may take less time to �nish.

In that case, the speedup ratio is even higher. So, the speedup ratios measured in our experiments are values

for the worst cases. It is important to note that while FUP2 �nds exact values for L and �

0

X

8X 2 L

0

,

DELI only gives an approximate upper bound on

jL	L

0

j

jLj

. They compute di�erent things and we should not

directly compare their speeds. Nevertheless, the speedup ratio shows the amount of savings, in terms of

machine resources, that we gain if we run DELI instead of FUP2. In practice, DELI will not signal for the

14

need of using FUP2 very often. Suppose that on average, the need for using FUP2 is signaled once in every

n runs of DELI, then the fraction of machine resources saved would be 1�

1

n

�

1

speedup ratio

. This saving is

positive when n > 1 and speedup > 1. Moreover, when n is large, this saving approaches 1 �

1

speedup ratio

,

which could be substantial.

5.1 Generation of synthetic databases

In the following experiments, we use synthetic databases. The synthesis procedure was introduced in [2]

and subsequently modi�ed in [5, 12]. The reader is referred to these papers for detailed explanation of the

procedure. Below, we go through the procedure brie
y.

To generate the transaction database D

�

and the transactions in �

+

and �

�

, we �rst generate a pool

L of potentially large itemsets. Each itemset in L is generated by �rst determining the itemset size from a

Poisson distribution with mean jIj; then, the itemset is �lled with some items from the previous itemset, and

the remaining slots are �lled by randomly picking from N distinct items. After L is generated, it is used to

generate the database D

�

. Each transaction in D

�

�rst has its size determined from a Poisson distribution

with mean jT j. Next, a random itemset from L is chosen and its items are added to the transaction being

generated. If the transaction has acquired the desired size, we're done and we go to generate the next

transaction. If not, we pick another itemset from L and repeat the above until the transaction has got

the desired number of items. In this way, transactions in D

�

are generated. The transactions in �

+

are

generated similarly, except that they are generated from only a subset of p itemsets in L, rather than the

whole L. This is to make �

+

contain large itemsets not identical to those of D. Similarly, the transactions

in �

�

are generated from only a subset of q itemsets in L, rather than the whole L. Hence, we can model

the change of association rules when new transactions are added.

Following [5], we have set the parameters of the data generation procedure as follows: N = 1000, jIj = 4,

jT j = 10, jLj = 2000, and p = q = 1500. In these generated databases, our measurements show that

jL	L

0

j

jLj

ranges from 1% to 18% of the size of L. In other words, 1{18% of the large itemsets are changed by the

updates.

5.2 E�ects of the sample size

The �rst experiment is to study the e�ect of the sample size m on the behaviour of DELI. We �x jDj = 5000,

j�

+

j = j�

�

j = jDj � 5% = 5000, s% = 2% and z

�=2

= 1:96 (� = 0:05). As explained in Section 4.2, if we

want the maximum width of the con�dence not to exceed

jDj�s%

5

, we should set m to around 19 thousands.

In this experiment, we vary m between 5000 and 30000 to see its e�ect on DELI. We use the same databases

D

�

, �

+

and �

�

for all these values of m. So, the value of

jL	L

0

j

jLj

remains the same for all values of m in the

experiment. The results are plotted in Figure 3.

The speedup ratio is between 2:2 and 4:0 (see Figure 3). It can be observed from the �gure that the

speedup ratio decreases as m increases. This is expected: The speed of FUP2 is not a�ected by the sample

size. However, as the sample size increases, DELI has to examine more and more transactions. So, it

consumes more time and hence the speedup ratio decreases. From the same graph, it can be observed that

the critical value d

c

varies between 1:1 and 1:5 times the actual value of

jL	L

0

j

jLj

. This means the approximate

upper bounds given by DELI are reasonably good. The ratio d

c

=

jL	L

0

j

jLj

comes closer to 1 as m increases.

This is because with a larger sample, DELI can make better estimations and hence the bounds are closer to

the actual values. This observation con�rms the results of our analysis in Section 4.2: The accuracy of the

estimations can be improved by using a larger sample. The price to pay is the increase in the amount of

15

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of Sample Size

Sample Size m (Number of transactions)

R

a

t

i

o

30000250002000015000100005000

4:0

3:5

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 3: E�ects of the sample size m

E�ects of Sample Size on u

c

Sample Size m (Number of transactions)

u

c

30000250002000015000100005000

0:0040

0:0035

0:0030

0:0025

0:0020

0:0015

0:0010

0:0005

0:0000

Figure 4: E�ects of the sample size m on u

c

16

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of the level of con�dence

z

�=2

R

a

t

i

o

2:5762:4222:2682:1141:9601:8031:645

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 5: E�ects of the level of con�dence

time taken. So, we have a tradeo� between machine resource and accuracy. The critical value u

c

is plotted

against the sample size in Figure 4. Its value remains below 0:0040 with minor
uctuations. This is a very

small value. So, the results of DELI are very reliable. In each iteration, no more than 0:4% of the new large

itemsets would be false hits.

Thus, very reliable conclusions can be made by DELI even when the sample size is relatively small

(w.r.t. jDj). Higher reliability can be achieved by using a larger sample, at the expense of consuming more

machine resources.

5.3 E�ects of the level of con�dence

Our next experiment is to study the e�ects of � on the performance of DELI. We �x jDj = 100000,

j�

+

j = j�

�

j = 5000, s% = 2%, m = 20000 and vary the value of z

�=2

between 1:645 (for � = 0:10) and

2:576 (for � = 0:01). The same databases �

�

, D

�

and �

+

are used throughout this experiment. Hence, the

value of

jL	L

0

j

jLj

remains the same for all values of z

�=2

in the experiment. The results are shown in Figures

5 and 6.

Figure 5 shows that the value d

c

slowly increases with z

�=2

. This is because at greater values of z

�=2

,

the level of con�dence 100(1��)% increases and hence DELI is making more conservative estimations. The

resulting critical value d

c

is larger. So, we should have a larger chance of having u and d exceeded. A

similar explanation applies for the increase of u

c

against z

�=2

as revealed in Figure 6. However, the level of

con�dence has no signi�cant e�ects on the speedup ratio (see Figure 5).

This result suggests that we can make the estimations more conservative by setting z

�=2

to higher values

(i.e. lower values of �). This makes DELI generate signals for rule-update operations earlier and hence more

frequently. This would consume more resources, but in return, we will accurately �nd out the new rules

earlier. On the other hand, if we can tolerate a larger change in the set of association rules, we can use a

smaller value of z

�=2

. Then, DELI would generate the update signals less frequently, and hence more machine

resources can be saved.

17

E�ects of the level of con�dence on u

c

z

�=2

u

c

2:5762:4222:2682:1141:9601:8031:645

0:0040

0:0035

0:0030

0:0025

0:0020

0:0015

0:0010

0:0005

0:0000

Figure 6: u

c

against level of con�dence

5.4 E�ects of the size of updates

This experiment is to �nd out how the size of updates, i.e. j�

+

j and j�

�

j, a�ects the performance of DELI.

We set the parameters as follows: jDj = 100000, s% = 2%, z

�=2

= 1:96, m = 20000. We vary the value of

j�

+

j = j�

�

j from 5000 to 20000.

Figure 7 shows that the speedup ratio drops when the size of �

+

and �

�

increases. This is because a

major advantage of DELI over FUP2 is that it inspects a small sample of D instead of the entire D. However,

both algorithms examine all the transactions in �

+

and �

�

. So, the advantage of DELI diminishes as

j�

+

j = j�

�

j increases. Nevertheless, the maximum value of j�

+

j and j�

�

j that we use in the experiment is

20% of that of jDj and in that case, the speed up ratio is 1:75 (i.e. we still save 75% of the system resources).

Practically, DELI is applied to cases where j�

+

j and j�

�

j are much smaller. So, for practical applications,

the speedup is signi�cant.

On the same �gure, it can be observed that the ratio d

c

=

jL	L

0

j

jLj

decreases as j�

+

j and j�

�

j increase. This is

because the DELI algorithm gets information about the new databaseD

0

from two sources, namely the sample

S and the new transactions in �

+

and �

�

. The information derived from the former source are estimations

and hence inaccurate, while the latter source provides accurate information. In this experiment, we �xed

the sample size m. So, the amount of inaccurate information that DELI gets remains the same. Meanwhile,

the amount of accurate information that DELI gets increases as j�

+

j and j�

�

j increase. Consequently, the

accuracy of estimations increases. Thus, the ratio d

c

=

jL	L

0

j

jLj

approaches 1 as j�

+

j and j�

�

j increase. For

similar reasons, the value of u

c

(see Figure 8) decreases from 0.012 to 0.006 as j�

+

j and j�

�

j increases from

5000 to 20000.

Hence, for practical values of j�

+

j and j�

�

j, where they are small, the speedup of DELI over FUP2 is

signi�cant. Moreover, even for these values of j�

+

j and j�

�

j, the values of u

c

and d

c

=

jL	L

0

j

jLj

are low enough

so that DELI would not unnecessarily signal for the need of using FUP2. Thus, practically, DELI is quite

e�cient and it seldom generates the signal for a rule-update operation when it is unnecessary.

18

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of j�

+

j and j�

�

j (jDj = 100000)

j�

+

j (= j�

�

j)

R

a

t

i

o

20000150001000075005000

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 7: E�ects of j�

+

j and j�

�

j

Variation of j�

+

j and j�

�

j (jDj = 100000)

j�

+

j (= j�

�

j)

u

c

20000150001000075005000

0:012

0:010

0:008

0:006

0:004

0:002

0:000

Figure 8: E�ects of j�

+

j and j�

�

j on u

c

19

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of j�

+

j (jDj = 100000, j�

�

j = 5000)

j�

+

j

R

a

t

i

o

200001500010000750050002500

3:5

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 9: E�ects of j�

+

j

5.5 E�ects of the size of �

+

The above experiment only shows how DELI performs when j�

+

j = j�

�

j. To see how the size of �

+

alone

would a�ect the performance, we do another experiment. We set the parameters as follows: jDj = 100000,

j�

�

j = 5000, s% = 2%, z

�=2

= 1:96, m = 20000. We vary the value of j�

+

j from 2500 to 20000.

From Figure 9, it can be observed that the speedup ratio drops as j�

+

j increases. In fact, when the size

of �

+

increases, the execution times of both FUP2 and DELI increases. This is because both FUP2 and DELI

has to spend more time to examine a larger �

+

. However, the increase in execution time of DELI is more

signi�cant. This is because the major saving of DELI over FUP2 is that it scans D

�

only once. DELI still

has to scan �

+

multiple times to extract information. So, the saving of DELI over FUP2 diminishes as �

+

increases in size relative to D

�

. This increase in execution time, however, causes the estimations made by

DELI to be more and more accurate as j�

+

j increases. This is because DELI only does estimations for the

transactions in D. It extracts exact information from �

+

. So, as �

+

increases in size, DELI gets more and

more accurate information, thus making more and more accurate deductions. This explains why the curve

of d

c

=

jL	L

0

j

jLj

approaches 1:0 as j�

+

j increases.

Figure 10 is a plot of u

c

against j�

+

j. No simple relationship between these two quantities can be derived

from the graph. However, we can see from the graph that the value of u

c

is below 0:012, which is very low.

So, although we cannot observe any trends of u

c

as j�

+

j is varied, we know that the level of uncertainty of

DELI is very low.

5.6 E�ects of the size of �

�

For the sake of completeness, a complementary experiment is performed to see how the size of �

�

alone would

a�ect the performance of the algorithm. The parameters are set as follows: jDj = 100000, j�

+

j = 5000,

s% = 2%, z

�=2

= 1:96, m = 20000. We vary the value of j�

�

j from 2500 to 20000.

We can see from Figure 11 that the speedup ratio initially increases as j�

�

j increases but eventually

decreases for large values of j�

�

j. The initial increase is caused by the amount of certain information that

DELI can get. With small values of j�

�

j, DELI cannot get too much certain information, since it only get

20

Variation of j�

+

j (jDj = 100000, j�

�

j = 5000)

j�

+

j

u

c

200001500010000750050002500

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Figure 10: E�ects of j�

+

j on u

c

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of j�

�

j (jDj = 100000, j�

+

j = 5000)

j�

�

j

R

a

t

i

o

200001500010000750050002500

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 11: E�ects of j�

�

j

21

Variation of j�

�

j (jDj = 100000, j�

+

j = 5000)

j�

�

j

u

c

200001500010000750050002500

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Figure 12: E�ects of j�

�

j on u

c

exact counts from �

�

and �

+

. As a result, DELI cannot make very reliable estimations. Yet, it tends to be

conservative. So, as j�

�

j decreases over ranges of small values, DELI gets less and less accurate information.

To be conservative, it generates more and more candidates, and hence it has to spend more and more time

on obtaining support counts from �

�

and �

+

. Thus, the speedup decreases as j�

�

j decreases. However,

for larger j�

�

j, this e�ect starts to diminish. Once j�

�

j is large enough, DELI can become quite con�dent

with its estimations. Then, another e�ect starts to dominate in determining the speedup ratio. This e�ect

is caused by the increase in the amount of transactions in �

�

that both FUP2 and DELI has to examine. As

mentioned in the previous subsection, DELI's speedup over FUP2 is mainly attributed to the examination of

the sample S instead of D. Both algorithms still has to examine �

�

several times. So, the saving resulting

from the use of sampling in DELI diminishes as j�

�

j increases. Thus, the speedup ratio drops as j�

�

j increase

when j�

�

j is large enough. Anyway, the speedup ratio remains above 2:0 in the experiments. So, DELI runs

faster than FUP2 in all the cases in the experiment. For the same reasons given in the last subsection, the

estimations made by DELI increases in accuracy as j�

�

j increases. This is exhibited by the curve of d

c

=

jL	L

0

j

jLj

in Figure 11.

Figure 12 shows how the value of u

c

varies as j�

�

j is varied. The roughly observed trend is that

u

c

increases as j�

�

j increases. The explanation is that the larger the size of �

�

, the smaller the similarity

betweenD andD

0

and hence L and L

0

and hence the less reliable our estimations for the updated databaseD

0

derived from the information of the old databaseD. So, the certainty level of DELI decreases as j�

�

j increases.

5.7 E�ects of the support threshold

The next experiment shows the e�ects of the support threshold s%. We set jDj = 100000, j�

+

j = j�

�

j =

5000, z

�=2

= 1:96, m = 20000 and vary the value of s% between 1:0% and 3:0%. The results are shown in

Figure 13.

The �gure does not reveal any general trend of the performance of DELI with respect to the support

threshold. Neither do we �nd a simple pattern for u

c

(Figure 14), which remained below 0.025. No simple

relationships between these quantities and s% can be observed. This is because the size of the symmetric

di�erence L	L

0

has no direct relationship with the sizes of L and L

0

, even though we know that jLj and jL

0

j

22

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

E�ects of support threshold (s%)

s (%)

R

a

t

i

o

3:02:52:01:51:0

3:0

2:5

2:0

1:5

1:0

0:5

0:0

Figure 13: E�ects of s%

Variation of support threshold

support threshold (%)

u

c

3:02:52:01:51:0

0:025

0:020

0:015

0:010

0:005

0:000

Figure 14: E�ects of s% on u

c

23

d

c

=

jL	L

0

j

jLj

Speedup (FUP2/DELI)

Scale-up Experiment

jDj (thousand transactions)

R

a

t

i

o

500025001000750500250100

5:0

4:0

3:0

2:0

1:0

0:0

Figure 15: Scale-up Experiment

decreases as s% increases. Hence, we believe that the value of s% does not have any simple relationships

with the performance of DELI.

5.8 Scale-up Experiment

We want to know if DELI still performs well when the size of the databases becomes orders of magnitudes

larger than the above experiments. So, in this experiment, we increase jDj from 100 thousand gradually up

to 5000 thousand. The size of �

+

and �

�

are increased accordingly, so that j�

+

j = j�

�

j = jDj � 5% in each

case. Other parameters are set as follows: s% = 2%, z

�=2

= 1:96 and m = 20000. The results are shown in

Figures 15 and 16.

It is obvious from the �gure that the speedup factor increases signi�cantly as jDj, j�

+

j and j�

�

j increase.

We account this to the I/O overhead of FUP2 and the e�ect of disk-caching of the operating system. Recall

that FUP2 has to scan the old database D several times, while DELI does that only once. So, as the size of

D increases, the I/O overhead of FUP2 increases rapidly. Also, for very large values of jDj, the disk-cache

system will have a lot of cache misses during the scan of D. This e�ect is ampli�ed by FUP2, which scans

D several times.

Clearly, DELI performs much better than FUP2, which is already scalable [5], for very large databases.

At the same time, the ratio d

c

=

jL	L

0

j

jLj

is not sensitive to the size of the databases. It remains around 1.0

with minor
uctuations. The critical value u

c

(Figure 16) remained below 0:0030. The general tendency is

that u

c

decreases as the sizes of the databases increase. Therefore, the amount of uncertainty remains small.

So, the accuracy of the estimations made by DELI is insensitive to the absolute sizes of the databases. These

results show that our new algorithm DELI is highly scalable.

5.9 Summary

In the above experiments, we have observed that the critical values u

c

and d

c

are both very small. None of

u

c

's exceeds 0:036. This means the uncertainty level is very low. For example, if we had set the threshold

u to as low as 0.05, i.e. tolerating with no more than 1 false hit in every 20 new large itemsets, the DELI

24

Scale-up Experiment

jDj (thousand transactions)

u

c

500025001000750500250100

0:0030

0:0025

0:0020

0:0015

0:0010

0:0005

0:0000

Figure 16: Scale-up Experiment (value of u

c

)

algorithm would still not be terminated by the �rst criterion. At the same time, the observed values of d

c

are below 0:10 when j�

�

j < 10000. For larger values of j�

�

j, d

c

is larger. In our experiments, the maximum

value of j�

�

j is 20000 and d

c

never exceeds 0:21. This value is also very low. If we had set the threshold d

to 0.10, i.e. requiring DELI to signal the need for a rule-update operation when no less than 10% of the

set of large itemsets has changed, this threshold wouldn't be exceeded unless we have a large number of

deleted transactions (j�

�

j � 10000). So, for these threshold values and moderate sizes of �

�

, DELI would

not suggest that FUP2 be invoked to discover the new large itemsets L

0

. (We have also measured the actual

values of

jL	L

0

j

jLj

in the experiments, and none of them exceeded 0.18.) So, after running DELI, we wouldn't

need to run FUP2 because DELI told us that the di�erence between L

0

and L were not signi�cant. Since

the speedup ratio is always above 1.0, we would have saved much time, when compared to running FUP2

directly.

The measured values of the ratio d

c

=

jL	L

0

j

jLj

in our experiments are all below 2.0. Even for a value as

high as 2.0, provided that u

c

< u, the need for invoking FUP2 will be signaled only when the actual value

of

jL	L

0

j

jLj

is more than half of the value of d. Otherwise, FUP2 is not invoked, thereby saving resources; and

since

jL	L

0

j

jLj

is small, we may take L as a good approximation of L

0

,

6 Comparing with some other algorithms that also employ sam-

pling

Note that the Apriori algorithm described in Section 3.1 �nds out all the large itemsets and their exact

support counts from the database. This 100% accuracy is not required in many applications. It is possible

to exchange this unnecessary accuracy for a higher performance. In [11], it is pointed out that even for fairly

low values of support threshold s%, a sample size of 3000 transactions gives an extremely good approximation

of the large itemsets in the entire database. Working on such a small sample is much more e�cient, because

less I/O operations are required. In fact, the sample size is usually so small that the whole sample can reside

in main memory. This reduces I/O overhead to a minimum. Moreover, examining a small sample requires

much less computation than examining a huge database. Thus, sampling is a very powerful technique for

25

association rule mining, and it should also be very useful for other data mining problems.

Several association rule mining algorithms employing sampling techniques are proposed in [15]. Algo-

rithm 1 in that paper is a 1-pass algorithm. It scans the database only once. This algorithm is essentially

the same as applying Apriori to a small sample S of the database D, with a reduced support threshold

of s

0

% instead of s%. After Apriori is completed, the large itemsets thus found are then pruned by the

sampling algorithm against the original threshold s%. The algorithm also checks if there are possibly missed

large itemsets, using the concept of negative border [10]. So, the algorithm attempts to �nd out all the large

itemsets from a small sample, and tells whether the result is accurate by reporting whether there are possible

misses. Since our DELI algorithm aims at telling whether it is time to update the set of association rules,

rather than �nding the the rules or an approximation of it, it is di�cult to compare it with Algorithm 1,

which only �nds an approximate answer. We would like to remark that DELI eventually aims at �nding the

exact rules by invoking another algorithm such as FUP2. The use of DELI is reduce the frequency of using

FUP2 so as to save machine resources.

Algorithm 1 can only report the presence of possible misses, but it does not �nd out the missed item-

sets. To obtain an accurate mining result, we need to �nd out the missed itemsets. Therefore, [15] gives

Algorithm 2 for extending Algorithm 1 to �nd out all the missed itemsets and their support counts in a

second pass. After the �rst pass as in Algorithm 1, those possibly missed itemsets are computed using again

the concept of negative border. Then, the entire database is scanned a second time to verify if the possible

misses are really large. Thus, this second algorithm is always able to �nd out all the large itemsets from

the database. Unlike Apriori, which has to scan the database several times, the second algorithm scans the

database at most twice. This avoids much I/O overhead and hence improves performance. We would like to

point out that this algorithm has a very high requirement on the capacity of primary memory in the system.

This is because it has to handle all its candidates in the �nal scan of the database. Moreover, the number

of candidates is not small. We have in fact discovered that in case of the presence of possible misses, the

candidate set generated by this algorithm for the �nal scan includes all the possible itemsets. This is because

if an itemset X is not included, then either at least one of its size jX j � 1 subsets is not in set of candidates

(denoted by S), or all of its size jX j � 1 subsets are inside the candidate set. The later case is impossible,

because that would mean X is an itemset in Br

�

(S) (the negative border of S) and the algorithm would

have included X into S. So, we're left with the former case only, which says that at least one of the size

jX j�1 subset of X must not be in S. Continuing the application of this deduction to this subset and its own

subsets and so on, we would eventually come to the conclusion that the empty-set is not in S, which would

then contradict the correctness of the algorithm, since the empty-set is a (trivially) large itemset and hence

it must be a candidate. So, it is impossible that an itemset X is not included in S. Thus, S has to contain

all the possible itemsets, and hence its size is 2

jIj

. To handle such a large candidate set in one database

scan, a lot of memory is needed.

9

Practically, such large amount of physical memory is not a�ordable. With

highly inadequate memory, a virtual memory system would thrash severely. Alternatively, we may scan the

databases several times, handling just a portion of the candidate set in each scan. The size of each portion

handled should be such that the available memory can accommodate the support counts of all the itemsets

in that portion. But then, the number of database scans is not much less than that of DELI. Therefore, we

argue that our DELI algorithm is more applicable, because it has much lesser requirements on memory.

Since the memory requirement of Algorithm 2 is too large, the paper proposes Algorithm 3 to attempt

to reduce it. Algorithm 3 tries to reduce the size of the candidate set S by allowing it to omit itemsets that

9

Indeed, if we have that much memory, we can use the power set of I as our initial candidate set. Then, 1 pass of scanning

the database will be su�cient to �nd out all the large itemsets.

26

are highly unlikely

10

to be large. In other words, Algorithm 3 may miss some large itemsets in its mining

results, although the probability of this is controlled to be below a user-speci�ed threshold. So, it does not

�nd out the set of large itemsets accurately. Moreover, it focuses on controlling the miss probability but does

not limit the number of the generated candidate itemsets. The candidate generation method is basically

the same as Algorithm 1 extended by Algorithm 2. So, the number of generated candidates is comparable

to the extended algorithm. When the probability threshold is small (so that the chances of missing large

itemsets is small), Algorithm 3 behaves conservatively. It would generate a very large amount of candidates.

For instance, step 7 of the algorithm examines all candidates in S [Br

�

(S), which are as numerous as

all the candidates generated by Apriori. So, this algorithm also su�ers from the problem of high memory

requirement as explained above. If the probability threshold is large, then the memory requirement could be

lessened, but we'll have a high chance of missing large itemsets. This is undesirable. Hence, these algorithms

are not suitable for �nding accurate mining results. DELI is useful for maintaining the set of large itemsets

accurately.

7 Discussions

7.1 Why not sample the newly added transactions?

In the DELI algorithm, we use a sample S of the original database D to estimate the support counts �

X

of

itemsets X 2 Q

k

. Why don't we do the same for the counts �

+

X

in �

+

and �

�

X

in �

�

? This is because DELI

is usually applied to situations where j�

+

j and j�

�

j are small. It is often the case that the whole �

+

and �

�

can reside in main memory or the disk-cache bu�ers of the operating system. For such small �

+

and �

�

,

we cannot gain much speed by the sampling technique, but the decreased accuracy of the estimated values

of �

X

would a�ect the overall accuracy of DELI a lot. So, we choose to examine the whole �

+

and �

�

for

100% accuracy of the counts �

X

.

7.2 Consecutive runs

Suppose we have applied the Apriori algorithm to �nd out the association rules in a database. Some time

later, a batch of update arrives and we use the DELI algorithm to estimate whether an update of the rules

is necessary. Suppose the answer is negative, so we continue to take the old association rules as valid rules.

Now, suppose a second batch of update has arrived. We have to reapply the DELI algorithm to estimate

whether the 2 batches of updates together has introduced signi�cant changes to the association rules in the

database.

Note that this second run of the DELI algorithm is actually repeating much work that has already been

done in the �rst run. So, if we can a�ord the storage, we can save some intermediate results from the �rst

run of the DELI algorithm. This saved information can be reused in the subsequent runs to reduce the

amount of work that has to be done. In particular, the values of �

+

X

and �

�

X

can be saved to avoid scanning

the �rst batch of updates again. This idea extends to the second and third runs. In general, in a sequence

of consecutive runs of DELI, information can be accumulated gradually so that subsequent runs can make

use of the information from the previous runs. The amount of information so accumulated will not be too

large, because an update operation will be triggered eventually, at which time the accumulated information

can be dumped completely.

10

with respect to a user-speci�ed threshold on the probability of this.

27

8 Conclusions

In this paper, we study the usefulness of sampling techniques in data mining. Our experience with the

maintenance of association rules gives an a�rmative answer. Applying sampling techniques, we devised a

new algorithm DELI for �nding an approximate upper bound on the size of the di�erence between association

rules of a database before and after it is updated. The algorithm uses sampling and statistical methods to

give a reliable upper bound. If the bound is low, then the amount of changes in association rules is small.

So, the old association rules can be taken as a good approximation of the new ones. If the bound is high,

the necessity of updating of the association rules in the database is signaled. Experiments show that DELI

is not only e�cient with high reliability, but also scalable. It is e�ective in saving machine resources in the

maintenance of association rules. We have also discussed how the algorithm can be extended to handle the

case of transaction deletions, and how it can be modi�ed to make consecutive runs more e�cient. These

encouraging results assure that sampling is useful in data mining.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

databases. In Proc. ACM SIGMOD International Conference on Management of Data, page 207, Wash-

ington, DC, May 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules in Large

Databases. In Proceedings of the Twentieth International Conference on Very Large Databases, pages

487{499, Santiago, Chile, 1994.

[3] David W. Cheung, Jiawei Han, Vincent T. Ng, Ada Fu, and Yongjian. Fu. A fast distributed algorithm

for mining association rules. In Proc. Fourth International Conference on Parallel and Distributed

Information Systems, Miami Beach, Florida, December 1996.

[4] David W. Cheung, Jiawei Han, Vincent T. Ng, and C. Y. Wong. Maintenance of discovered association

rules in large databases: An incremental updating technique. In Proceedings of the Twelfth International

Conference on Data Engineering, New Orleans, Louisiana, 1996. IEEE Computer Society.

[5] David W. L. Cheung, S. D. Lee, and Benjamin Kao. A general incremental technique for maintaining

discovered association rules. In Proceedings of the Fifth International Conference on Database Systems

for Advanced Applications, pages 185{194, Melbourne, Australia, 1{4 April 1997.

[6] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from large databases. In

Proceedings of the 21st VLDB Conference, pages 420{431, Zurich, Switzerland, 1995.

[7] Marcel Holsheimer, Martin Kersten, Heikki Mannila, and Hannu Toivonen. A perspective on databases

and data mining. In First International Conference on Knowledge Discovery and Data Mining

(KDD'95), pages 150{155, Montreal, Canada, August 1995. AAAI Press.

[8] Jyrki Kivinen and Heikki Mannila. The power of sampling in knowledge discovery. In 13th Symposium

| 1994 May: Minneapolis; MN, volume 13 of Proceedings of the ACM SIGACT SIGMOD SIGART

Symposium on Principles of Database Systems 1994, pages 77{85, New York, NY 10036, USA, 1994.

ACM Press.

28

[9] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and A. Inkeri Verkamo. Finding

interesting rules from large sets of discovered association rules. In Nabil R. Adam, Bharat K. Bhargava,

and Yelena Yesha, editors, Third International Conference on Information and Knowledge Management

(CIKM'94), pages 401{407. ACM Press, November 1994.

[10] Heikki Mannila and Hannu Toivonen. On an algorithm for �nding all interesting sentences. In Cyber-

netics and Systems Research '96, 973{978, Vienna, Austria, April 1996. Austrian Society for Cybernetic

Studies.

[11] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. E�cient algorithms for discovering association

rules. In Usama M. Fayyad and Ramasamy Uthurusamy, editors, Knowledge Discovery in Databases

(KDD'94), pages 181 { 192, Seattle, Washington, July 1994. AAAI Press.

[12] J. S. Park, M. S. Chen, and P. S. Yu. E�cient parallel data mining for association rules. In Proc.

1995 International Conference on Information and Knowledge Management, Baltimore, MD, November

1995.

[13] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An e�ective hash-based algorithm for mining

association rules. In Proc. ACM SIGMOD International Conference on Management of Data, San Jose,

California, May 1995.

[14] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association rules in large relational

tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, Proc. ACM SIGMOD International

Conference on Management of Data, Montreal, Canada, June 1996.

[15] Hannu Toivonen. Sampling large databases for �nding association rules. In Proceedings of the 22th

International Conference on Very Large Databases (VLDB'96), pages 134{145, Mumbay, India, 3{6

September 1996. Morgan Kaufmann.

[16] Kishor Shridharbhai Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science

Applications. Prentice Hall of India Private Limited, M-97, Connaught Circus, New Delhi-110001, 1988.

29

