
Mining Sequential Patterns

Rakesh Agrawal Ramakrishnan Srikant

�

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract

We are given a large database of customer transac-

tions, where each transaction consists of customer-id,

transaction time, and the items bought in the transac-

tion. We introduce the problem of mining sequential

patterns over such databases. We present three algo-

rithms to solve this problem, and empirically evalu-

ate their performance using synthetic data. Two of

the proposed algorithms, AprioriSome and Apriori-

All, have comparable performance, albeit AprioriSome

performs a little better when the minimum number

of customers that must support a sequential pattern

is low. Scale-up experiments show that both Apri-

oriSome and AprioriAll scale linearly with the num-

ber of customer transactions. They also have excel-

lent scale-up properties with respect to the number of

transactions per customer and the number of items in

a transaction.

1 Introduction

Database mining is motivated by the decision sup-

port problem faced by most large retail organizations.

Progress in bar-code technology has made it possible

for retail organizations to collect and store massive

amounts of sales data, referred to as the basket data.

A record in such data typically consists of the trans-

action date and the items bought in the transaction.

Very often, data records also contain customer-id, par-

ticularly when the purchase has been made using a

credit card or a frequent-buyer card. Catalog compa-

nies also collect such data using the orders they re-

ceive.

We introduce the problem of mining sequential pat-

terns over this data. An example of such a pattern is

�

Also Department of Computer Science, University of Wis-

consin, Madison.

that customers typically rent \Star Wars", then \Em-

pire Strikes Back", and then \Return of the Jedi".

Note that these rentals need not be consecutive. Cus-

tomers who rent some other videos in between also

support this sequential pattern. Elements of a sequen-

tial pattern need not be simple items. \Fitted Sheet

and
at sheet and pillow cases", followed by \com-

forter", followed by \drapes and ru�es" is an example

of a sequential pattern in which the elements are sets

of items.

Problem Statement We are given a database D

of customer transactions. Each transaction consists

of the following �elds: customer-id, transaction-time,

and the items purchased in the transaction. No cus-

tomer has more than one transaction with the same

transaction-time. We do not consider quantities of

items bought in a transaction: each item is a binary

variable representing whether an item was bought or

not.

An itemset is a non-empty set of items. A sequence

is an ordered list of itemsets. Without loss of gener-

ality, we assume that the set of items is mapped to a

set of contiguous integers. We denote an itemset i by

(i

1

i

2

:::i

m

), where i

j

is an item. We denote a sequence

s by h s

1

s

2

:::s

n

i, where s

j

is an itemset.

A sequence h a

1

a

2

:::a

n

i is contained in another se-

quence h b

1

b

2

:::b

m

i if there exist integers i

1

< i

2

<

::: < i

n

such that a

1

� b

i

1

, a

2

� b

i

2

, ..., a

n

� b

i

n

. For

example, the sequence h (3) (4 5) (8) i is contained in

h (7) (3 8) (9) (4 5 6) (8) i, since (3) � (3 8), (4 5)� (4

5 6) and (8) � (8). However, the sequence h (3) (5) i is

not contained in h (3 5) i (and vice versa). The former

represents items 3 and 5 being bought one after the

other, while the latter represents items 3 and 5 being

bought together. In a set of sequences, a sequence s is

maximal if s is not contained in any other sequence.

All the transactions of a customer can together

be viewed as a sequence, where each transaction

corresponds to a set of items, and the list of

Customer Id TransactionTime Items Bought

1 June 25 '93 30

1 June 30 '93 90

2 June 10 '93 10, 20

2 June 15 '93 30

2 June 20 '93 40, 60, 70

3 June 25 '93 30, 50, 70

4 June 25 '93 30

4 June 30 '93 40, 70

4 July 25 '93 90

5 June 12 '93 90

Figure 1: Database Sorted by Customer Id and Trans-

action Time

Customer Id Customer Sequence

1 h (30) (90) i

2 h (10 20) (30) (40 60 70) i

3 h (30 50 70) i

4 h (30) (40 70) (90) i

5 h (90) i

Figure 2: Customer-Sequence Version of the Database

transactions, ordered by increasing transaction-time,

corresponds to a sequence. We call such a se-

quence a customer-sequence. Formally, let the

transactions of a customer, ordered by increasing

transaction-time, be T

1

, T

2

, ..., T

n

. Let the set

of items in T

i

be denoted by itemset(T

i

). The

customer-sequence for this customer is the sequence

h itemset(T

1

) itemset(T

2

) ... itemset(T

n

) i.

A customer supports a sequence s if s is contained

in the customer-sequence for this customer. The sup-

port for a sequence is de�ned as the fraction of total

customers who support this sequence.

Given a database D of customer transactions, the

problem of mining sequential patterns is to �nd the

maximal sequences among all sequences that have a

certain user-speci�ed minimum support. Each such

maximal sequence represents a sequential pattern.

We call a sequence satisfying the minimum support

constraint a large sequence.

Example Consider the database shown in Fig. 1.

(This database has been sorted on customer-id and

transaction-time.) Fig. 2 shows this database ex-

pressed as a set of customer sequences.

With minimumsupport set to 25%, i.e., a minimum

support of 2 customers, two sequences: h (30) (90) i

and h (30) (40 70) i are maximal among those satis-

fying the support constraint, and are the desired se-

Sequential Patterns with support > 25%

h (30) (90) i

h (30) (40 70) i

Figure 3: The answer set

quential patterns. The sequential pattern h (30) (90) i

is supported by customers 1 and 4. Customer 4 buys

items (40 70) in between items 30 and 90, but supports

the pattern h (30) (90) i since we are looking for pat-

terns that are not necessarily contiguous. The sequen-

tial pattern h 30 (40 70) i is supported by customers 2

and 4. Customer 2 buys 60 along with 40 and 70, but

supports this pattern since (40 70) is a subset of (40

60 70).

An example of a sequence that does not have mini-

mum support is the sequence h (10 20) (30) i, which is

only supported by customer 2. The sequences h (30) i,

h (40) i, h (70) i, h (90) i, h (30) (40) i, h (30) (70) i and

h (40 70) i, though having minimum support, are not

in the answer because they are not maximal.

Related Work In [1], the problem of discovering

\what items are bought together in a transaction"

over basket data was introduced. While related, the

problem of �nding what items are bought together

is concerned with �nding intra-transaction patterns,

whereas the problem of �nding sequential patterns is

concerned with inter-transaction patterns. A pattern

in the �rst problem consists of an unordered set of

items whereas a pattern in the latter case is an or-

dered list of sets of items.

Discovering patterns in sequences of events has

been an area of active research in AI (see, for example,

[6]). However, the focus in this body of work is on dis-

covering the rule underlying the generation of a given

sequence in order to be able to predict a plausible

sequence continuation (e.g. the rule to predict what

number will come next, given a sequence of numbers).

We on the hand are interested in �nding all common

patterns embedded in a database of sequences of sets

of events (items).

Our problem is related to the problem of �nding

text subsequences that match a given regular expres-

sion (c.f. the UNIX grep utility). There also has been

work on �nding text subsequences that approximately

match a given string (e.g. [5] [12]). These techniques

are oriented toward �nding matches for one pattern.

In our problem, the di�culty is in �guring out what

patterns to try and then e�ciently �nding out which

ones are contained in a customer sequence.

Techniques based on multiple alignment [11] have

been proposed to �nd entire text sequences that are

similar. There also has been work to �nd locally simi-

lar subsequences [4] [8] [9]. However, as pointed out in

[10], these techniques apply when the discovered pat-

terns consist of consecutive characters or multiple lists

of consecutive characters separated by a �xed length

of noise characters.

Closest to our problem is the problem formulation

in [10] in the context of discovering similarities in a

database of genetic sequences. The patterns they wish

to discover are subsequences made up of consecutive

characters separated by a variable number of noise

characters. A sequence in our problem consists of list

of sets of characters (items), rather than being sim-

ply a list of characters. Thus, an element of the se-

quential pattern we discover can be a set of characters

(items), rather than being simply a character. Our

solution approach is entirely di�erent. The solution

in [10] is not guaranteed to be complete, whereas we

guarantee that we have discovered all sequential pat-

terns of interest that are present in a speci�ed mini-

mum number of sequences. The algorithm in [10] is

a main memory algorithm based on generalized su�x

tree [7] and was tested against a database of 150 se-

quences (although the paper does contain some hints

on how they might extend their approach to handle

larger databases). Our solution is targeted at millions

of customer sequences.

Organization of the Paper We solve the problem

of �nding all sequential patterns in �ve phases: i) sort

phase, ii) litemset phase, iii) transformation phase, iv)

sequence phase, and v) maximalphase. Section 2 gives

this problem decomposition. Section 3 examines the

sequence phase in detail and presents algorithms for

this phase. We empirically evaluate the performance

of these algorithms and study their scale-up proper-

ties in Section 4. We conclude with a summary and

directions for future work in Section 5.

2 Finding Sequential Patterns

Terminology The length of a sequence is the num-

ber of itemsets in the sequence. A sequence of length

k is called a k-sequence. The sequence formed by the

concatenation of two sequences x and y is denoted as

x:y.

The support for an itemset i is de�ned as the frac-

tion of customers who bought the items in i in a sin-

gle transaction. Thus the itemset i and the 1-sequence

h i i have the same support. An itemset with minimum

Large Itemsets Mapped To

(30) 1

(40) 2

(70) 3

(40 70) 4

(90) 5

Figure 4: Large Itemsets

support is called a large itemset or litemset. Note that

each itemset in a large sequence must have minimum

support. Hence, any large sequence must be a list of

litemsets.

2.1 The Algorithm

We split the problem of mining sequential patterns

into the following phases:

1. Sort Phase. The database (D) is sorted, with

customer-id as the major key and transaction-time as

the minor key. This step implicitly converts the orig-

inal transaction database into a database of customer

sequences.

2. Litemset Phase. In this phase we �nd the set

of all litemsets L. We are also simultaneously �nding

the set of all large 1-sequences, since this set is just

fh l i j l 2 Lg.

The problem of �nding large itemsets in a given set

of customer transactions, albeit with a slightly di�er-

ent de�nition of support, has been considered in [1]

[2]. In these papers, the support for an itemset has

been de�ned as the fraction of transactions in which

an itemset is present, whereas in the sequential pat-

tern �nding problem, the support is the fraction of

customers who bought the itemset in any one of their

possibly many transactions. It is straightforward to

adapt any of the algorithms in [2] to �nd litemsets.

The main di�erence is that the support count should

be incremented only once per customer even if the

customer buys the same set of items in two di�erent

transactions.

The set of litemsets is mapped to a set of contigu-

ous integers. In the example database given in Fig. 1,

the large itemsets are (30), (40), (70), (40 70) and

(90). A possible mapping for this set is shown in Fig.4.

The reason for this mapping is that by treating litem-

sets as single entities, we can compare two litemsets

for equality in constant time, and reduce the time re-

quired to check if a sequence is contained in a customer

sequence.

3. Transformation Phase. As we will see in Sec-

tion 3, we need to repeatedly determine which of a

given set of large sequences are contained in a cus-

tomer sequence. To make this test fast, we transform

each customer sequence into an alternative represen-

tation.

In a transformed customer sequence, each transac-

tion is replaced by the set of all litemsets contained

in that transaction. If a transaction does not con-

tain any litemset, it is not retained in the transformed

sequence. If a customer sequence does not contain

any litemset, this sequence is dropped from the trans-

formed database. However, it still contributes to the

count of total number of customers. A customer se-

quence is now represented by a list of sets of litemsets.

Each set of litemsets is represented by fl

1

; l

2

; . . . ; l

n

g,

where l

i

is a litemset.

This transformed database is called D

T

. Depend-

ing on the disk availability, we can physically create

this transformed database, or this transformation can

be done on-the-
y, as we read each customer sequence

during a pass. (In our experiments, we physically cre-

ated the transformed database.)

The transformation of the database in Fig. 2 is

shown in Fig. 5. For example, during the transfor-

mation of the customer sequence with Id 2, the trans-

action (10 20) is dropped because it does not contain

any litemset and the transaction (40 60 70) is replaced

by the set of litemsets f(40), (70), (40 70)g.

4. Sequence Phase. Use the set of litemsets to

�nd the desired sequences. Algorithms for this phase

are described in Section 3.

5. Maximal Phase. Find the maximal sequences

among the set of large sequences. In some algorithms

in Section 3, this phase is combined with the sequence

phase to reduce the time wasted in counting non-

maximal sequences.

Having found the set of all large sequences S in the

sequence phase, the following algorithm can be used

for �nding maximal sequences. Let the length of the

longest sequence be n. Then,

for (k = n; k > 1; k��) do

foreach k-sequence s

k

do

Delete from S all subsequences of s

k

Data structures (the hash-tree) and algorithm to

quickly �nd all subsequences of a given sequence are

described in [3] (and are similar to those used to �nd

all subsets of a given itemset [2]).

3 The Sequence Phase

The general structure of the algorithms for the se-

quence phase is that they make multiple passes over

the data. In each pass, we start with a seed set of

large sequences. We use the seed set for generating

new potentially large sequences, called candidate se-

quences. We �nd the support for these candidate se-

quences during the pass over the data. At the end

of the pass, we determine which of the candidate se-

quences are actually large. These large candidates be-

come the seed for the next pass. In the �rst pass, all

1-sequences with minimum support, obtained in the

litemset phase, form the seed set.

We present two families of algorithms, which we call

count-all and count-some. The count-all algorithms

count all the large sequences, including non-maximal

sequences. The non-maximal sequences must then be

pruned out (in the maximal phase). We present one

count-all algorithm, called AprioriAll, based on the

Apriori algorithm for �nding large itemsets presented

in [2].

1

We present two count-some algorithms: Apriori-

Some and DynamicSome. The intuition behind these

algorithms is that since we are only interested in maxi-

mal sequences, we can avoid counting sequences which

are contained in a longer sequence if we �rst count

longer sequences. However, we have to be careful

not to count a lot of longer sequences that do not

have minimum support. Otherwise, the time saved by

not counting sequences contained in a longer sequence

may be less than the time wasted counting sequences

without minimumsupport that would never have been

counted because their subsequences were not large.

Both the count-some algorithms have a forward

phase, in which we �nd all large sequences of certain

lengths, followed by a backward phase, where we �nd

all remaining large sequences. The essential di�erence

is in the procedure they use for generating candidate

sequences during the forward phase. As we will see

momentarily, AprioriSome generates candidates for a

pass using only the large sequences found in the pre-

vious pass and then makes a pass over the data to �nd

their support. DynamicSome generates candidates on-

the-
y using the large sequences found in the previ-

ous passes and the customer sequences read from the

1

The AprioriHybrid algorithm presented in [2] did better

than Apriori for �nding large itemsets. However, it used the

property that a k-itemset is present in a transaction if any two

of its (k� 1)-subsets are present in the transaction to avoid

scanning the database in later passes. Since this property does

not hold for sequences, we do not expect an algorithm based

on AprioriHybrid to do any better than the algorithm based on

Apriori.

Customer Id Original Transformed After

Customer Sequence Customer Sequence Mapping

1 h (30) (90) i h f(30)g f(90)g i h f1g f5g i

2 h (10 20) (30) (40 60 70) i h f(30)g f(40), (70), (40 70)g i h f1g f2, 3, 4g i

3 h (30 50 70) i h f(30), (70)g i h f1, 3g i

4 h (30) (40 70) (90) i h f(30)g f(40), (70), (40 70)g f(90)g i h f1g f2, 3, 4g f5g i

5 h (90) i h f(90)g i h f5g i

Figure 5: Transformed Database

L

1

= flarge 1-sequencesg; // Result of litemset phase

for (k = 2; L

k�1

6= ;; k++) do

begin

C

k

= New candidates generated from L

k�1

(see Section 3.1.1).

foreach customer-sequence c in the database do

Increment the count of all candidates in C

k

that are contained in c.

L

k

= Candidates in C

k

with minimum support.

end

Answer = Maximal Sequences in

S

k

L

k

;

Figure 6: Algorithm AprioriAll

database.

Notation In all the algorithms, L

k

denotes the set

of all large k-sequences, and C

k

the set of candidate

k-sequences.

3.1 Algorithm AprioriAll

The algorithm is given in Fig. 6. In each pass, we

use the large sequences from the previous pass to gen-

erate the candidate sequences and then measure their

support by making a pass over the database. At the

end of the pass, the support of the candidates is used

to determine the large sequences. In the �rst pass, the

output of the litemset phase is used to initialize the

set of large 1-sequences. The candidates are stored in

hash-tree [2] [3] to quickly �nd all candidates contained

in a customer sequence.

3.1.1 Apriori Candidate Generation

The apriori-generate function takes as argument

L

k�1

, the set of all large (k� 1)-sequences. The func-

tion works as follows. First, join L

k�1

with L

k�1

:

insert into C

k

select p.litemset

1

, ..., p.litemset

k�1

, q.litemset

k�1

from L

k�1

p, L

k�1

q

Large Candidate Candidate

3-Sequences 4-Sequences 4-Sequences

(after join) (after pruning)

h 1 2 3 i h 1 2 3 4 i h 1 2 3 4 i

h 1 2 4 i h 1 2 4 3 i

h 1 3 4 i h 1 3 4 5 i

h 1 3 5 i h 1 3 5 4 i

h 2 3 4 i

Figure 7: Candidate Generation

where p.litemset

1

= q.litemset

1

, . . .,

p.litemset

k�2

= q.litemset

k�2

;

Next, delete all sequences c 2 C

k

such that some

(k � 1)-subsequence of c is not in L

k�1

.

For example, consider the set of 3-sequences L

3

shown in the �rst column of Fig. 7. If this is given as

input to the apriori-generate function, we will get the

sequences shown in the second column after the join.

After pruning out sequences whose subsequences are

not in L

3

, the sequences shown in the third column

will be left. For example, h 1 2 4 3 i is pruned out be-

cause the subsequence h 2 4 3 i is not in L

3

. Proof of

correctness of the candidate generation procedure is

given in [3].

3.1.2 Example

Consider a database with the customer-sequences

shown in Fig. 8. We have not shown the original

database in this example. The customer sequences

are in transformed form where each transaction has

been replaced by the set of litemsets contained in the

transaction and the litemsets have been replaced by in-

tegers. The minimum support has been speci�ed to be

40% (i.e. 2 customer sequences). The �rst pass over

the database is made in the litemset phase, and we

determine the large 1-sequences shown in Fig. 9. The

large sequences together with their support at the end

of the second, third, and fourth passes are also shown

in the same �gure. No candidate is generated for the

h f1 5g f2g f3g f4g i

h f1g f3g f4g f3 5g i

h f1g f2g f3g f4g i

h f1g f3g f5g i

h f4g f5g i

Figure 8: Customer Sequences

�fth pass. The maximal large sequences would be the

three sequences h 1 2 3 4 i, h 1 3 5 i and h 4 5 i.

3.2 Algorithm AprioriSome

This algorithm is given in Fig. 10. In the forward

pass, we only count sequences of certain lengths. For

example, we might count sequences of length 1, 2, 4

and 6 in the forward phase and count sequences of

length 3 and 5 in the backward phase. The func-

tion next takes as parameter the length of sequences

counted in the last pass and returns the length of

sequences to be counted in the next pass. Thus,

this function determines exactly which sequences are

counted, and balances the tradeo� between the time

wasted in counting non-maximal sequences versus

counting extensions of small candidate sequences. One

extreme is next(k) = k + 1 (k is the length for which

candidates were counted last), when all non-maximal

sequences are counted, but no extensions of small can-

didate sequences are counted. In this case, Apriori-

Some degenerates into AprioriAll. The other extreme

is a function like next(k) = 100 � k, when almost no

non-maximal large sequence is counted, but lots of ex-

tensions of small candidates are counted.

Let hit

k

denote the ratio of the number of large

k-sequences to the number of candidate k-sequences

(i.e., jL

k

j=jC

k

j). The next function we used in the

experiments is given below. The intuition behind

the heuristic is that as the percentage of candidates

counted in the current pass which had minimum sup-

port increases, the time wasted by counting extensions

of small candidates when we skip a length goes down.

function next(k: integer)

begin

if (hit

k

< 0.666) return k+ 1;

elsif (hit

k

< 0.75) return k+ 2;

elsif (hit

k

< 0.80) return k+ 3;

elsif (hit

k

< 0.85) return k+ 4;

else return k+ 5;

end

We use the apriori-generate function given in

Section 3.1.1 to generate new candidate sequences.

However, in the kth pass, we may not have the large

// Forward Phase

L

1

= flarge 1-sequencesg; // Result of litemset phase

C

1

= L

1

; // so that we have a nice loop condition

last = 1; // we last counted C

last

for (k = 2; C

k�1

6= ; and L

last

6= ;; k++) do

begin

if (L

k�1

known) then

C

k

= New candidates generated from L

k�1

;

else

C

k

= New candidates generated from C

k�1

;

if (k == next(last)) then begin

foreach customer-sequence c in the database do

Increment the count of all candidates

in C

k

that are contained in c.

L

k

= Candidates in C

k

with minimum support.

last = k;

end

end

// Backward Phase

for (k��; k >= 1; k��) do

if (L

k

not found in forward phase) then begin

Delete all sequences in C

k

contained in

some L

i

, i > k;

foreach customer-sequence c in D

T

do

Increment the count of all candidates in C

k

that are contained in c.

L

k

= Candidates in C

k

with minimum support.

end

else // L

k

already known

Delete all sequences in L

k

contained in

some L

i

, i > k.

Answer =

S

k

L

k

;

Figure 10: Algorithm AprioriSome

sequence set L

k�1

available as we did not count the

(k � 1)-candidate sequences. In that case, we use the

candidate set C

k�1

to generate C

k

. Correctness is

maintained because C

k�1

� L

k�1

.

In the backward phase, we count sequences for the

lengths we skipped over during the forward phase, af-

ter �rst deleting all sequences contained in some large

sequence. These smaller sequences cannot be in the

answer because we are only interested in maximal se-

quences. We also delete the large sequences found in

the forward phase that are non-maximal.

In the implementation, the forward and backward

phases are interspersed to reduce the memory used by

the candidates. However, we have omitted this detail

in Fig. 10 to simplify the exposition.

L

1

1-Sequences Support

h 1 i 4

h 2 i 2

h 3 i 4

h 4 i 4

h 5 i 4

L

2

2-Sequences Support

h 1 2 i 2

h 1 3 i 4

h 1 4 i 3

h 1 5 i 3

h 2 3 i 2

h 2 4 i 2

h 3 4 i 3

h 3 5 i 2

h 4 5 i 2

L

3

3-Sequences Support

h 1 2 3 i 2

h 1 2 4 i 2

h 1 3 4 i 3

h 1 3 5 i 2

h 2 3 4 i 2

L

4

4-Sequences Support

h 1 2 3 4 i 2

Figure 9: Large Sequences

h 1 2 3 i

h 1 2 4 i

h 1 3 4 i

h 1 3 5 i

h 2 3 4 i

h 3 4 5 i

Figure 11: Candidate 3-sequences

3.2.1 Example

Using again the database used in the example for the

AprioriAll algorithm, we �nd the large 1-sequences

(L

1

) shown in Fig. 9 in the litemset phase (during the

�rst pass over the database). Take for illustration sim-

plicity, f(k) = 2k. In the second pass, we count C

2

to

get L

2

(Fig. 9). After the third pass, apriori-generate

is called with L

2

as argument to get C

3

. The candi-

dates in C

3

are shown in Fig. 11. We do not count C

3

,

and hence do not generate L

3

. Next, apriori-generate

is called with C

3

to get C

4

, which after pruning, turns

out to be the same C

4

shown in the third column of

Fig. 7. After counting C

4

to get L

4

(Fig. 9), we try

generating C

5

, which turns out to be empty.

We then start the backward phase. Nothing gets

deleted from L

4

since there are no longer sequences.

We had skipped counting the support for sequences

in C

3

in the forward phase. After deleting those se-

quences in C

3

that are subsequences of sequences in

L

4

, i.e., subsequences of h 1 2 3 4 i, we are left with

the sequences h 1 3 5 i and h 3 4 5 i. These would be

counted to get h 1 3 5 i as a maximal large 3-sequence.

Next, all the sequences in L

2

except h 4 5 i are deleted

since they are contained in some longer sequence. For

the same reason, all sequences in L

1

are also deleted.

3.3 Algorithm DynamicSome

The DynamicSome algorithm is shown in Fig. 12.

Like AprioriSome, we skip counting candidate se-

quences of certain lengths in the forward phase. The

candidate sequences that are counted is determined by

the variable step. In the initialization phase, all the

candidate sequences of length upto and including step

are counted. Then in the forward phase, all sequences

whose lengths are multiples of step are counted. Thus,

with step set to 3, we will count sequences of lengths

1, 2, and 3 in the initialization phase, and 6,9,12,...

in the forward phase. We really wanted to count only

sequences of lengths 3,6,9,12,... We can generate se-

quences of length 6 by joining sequences of length 3.

We can generate sequences of length 9 by joining se-

quences of length 6 with sequences of length 3, etc.

However, to generate the sequences of length 3, we

need sequences of lengths 1 and 2, and hence the ini-

tialization phase.

As in AprioriSome, during the backward phase, we

count sequences for the lengths we skipped over dur-

ing the forward phase. However, unlike in Apriori-

Some, these candidate sequences were not generated

in the forward phase. The intermediate phase gen-

erates them. Then the backward phase is identical to

the one for AprioriSome. For example, assume that we

count L

3

and L

6

, and L

9

turns out to be empty in the

forward phase. We generate C

7

and C

8

(intermediate

phase), and then count C

8

followed by C

7

after delet-

ing non-maximal sequences (backward phase). This

process is then repeated for C

4

and C

5

. In actual im-

plementation, the intermediate phase is interspersed

with the backward phase, but we have omitted this

detail in Fig. 12 to simplify exposition.

We use apriori-generate in the initialization and

intermediate phases, but use otf-generate in the for-

ward phase. The otf-generate procedure is given in

// step is an integer � 1

// Initialization Phase

L

1

= flarge 1-sequencesg; // Result of litemset phase

for (k = 2; k <= step and L

k�1

6= ;; k++) do

begin

C

k

= New candidates generated from L

k�1

;

foreach customer-sequence c in D

T

do

Increment the count of all candidates in C

k

that are contained in c.

L

k

= Candidates in C

k

with minimum support.

end

// Forward Phase

for (k = step; L

k

6= ;; k += step) do

begin

// �nd L

k+step

from L

k

and L

step

C

k+step

= ;;

foreach customer sequences c in D

T

do

begin

X = otf-generate(L

k

, L

step

, c); See Section 3.3.1

For each sequence x 2 X

0

, increment its count in

C

k+step

(adding it to C

k+step

if necessary).

end

L

k+step

= Candidates in C

k+step

with min support.

end

// Intermediate Phase

for (k��; k > 1; k��) do

if (L

k

not yet determined) then

if (L

k�1

known) then

C

k

= New candidates generated from L

k�1

;

else

C

k

= New candidates generated from C

k�1

;

// Backward Phase : Same as that of AprioriSome

Figure 12: Algorithm DynamicSome

Section 3.3.1. The reason is that apriori-generate

generates less candidates than otf-generatewhen we

generate C

k+1

from L

k

[2]. However, this may not

hold when we try to �nd L

k+step

from L

k

and L

step

2

,

as is the case in the forward phase. In addition, if the

size of jL

k

j + jL

step

j is less than the size of C

k+step

generated by apriori-generate, it may be faster to �nd

all members of L

k

and L

step

contained in c than to

�nd all members of C

k+step

contained in c.

3.3.1 On-the-
y Candidate Generation

The otf-generate function takes as arguments L

k

,

the set of large k-sequences, L

j

, the set of large j-

sequences, and the customer sequence c. It returns

the set of candidate (k + j)-sequences contained in c.

The intuition behind this generation procedure is

that if s

k

2 L

k

and s

j

2 L

j

are both contained in c,

and they don't overlap in c, then h s

k

.s

j

i is a candidate

(k + j)-sequence. Let c be the sequence h c

1

c

2

:::c

n

i.

The implementationof this function is as shown below:

// c is the sequence h c

1

c

2

:::c

n

i

X

k

= subseq(L

k

, c);

forall sequences x 2 X

k

do

x.end = minfjjx is contained in h c

1

c

2

:::c

j

ig;

X

j

= subseq(L

j

, c);

forall sequences x 2 X

j

do

x.start = maxfjjx is contained in h c

j

c

j+1

:::c

n

ig;

Answer = join of X

k

with X

j

with the join

condition X

k

.end < X

j

.start;

For example, consider L

2

to be the set of se-

quences in Fig. 9, and let otf-generate be called

with parameters L

2

, L

2

and the customer-sequence

h f1g f2g f3 7g f4g i. Thus c

1

corresponds to f1g, c

2

to f2g, etc. The end and start values for each sequence

in L

2

which is contained in c are shown in Fig. 13.

Thus, the result of the join with the join condition

X

2

:end < X

2

:start (where X

2

denotes the set of se-

quences of length 2) is the single sequence h 1 2 3 4 i.

3.3.2 Example

Continuing with our example of Section 3.1.2, consider

a step of 2. In the initialization phase, we determine L

2

shown in Fig. 9. Then, in the forward phase, we get 2

candidate sequences in C

4

: h 1 2 3 4 i with support of

2 and h 1 3 4 5 i with support of 1. Out of these, only

h 1 2 3 4 i is large. In the next pass, we �nd C

6

to be

2

The apriori-generate procedure in Section 3.1.1 needs to be

generalized to generate C

k+j

from L

k

. Essentially, the join

condition has to be changed to require equality of the �rst k� j

terms, and the concatenation of the remaining terms.

Sequence End Start

h 1 2 i 2 1

h 1 3 i 3 1

h 1 4 i 4 1

h 2 3 i 3 2

h 2 4 i 4 2

h 3 4 i 4 3

Figure 13: Start and End Values

empty. Now, in the intermediate phase, we generate

C

3

from L

2

, and C

5

from L

4

. Since C

5

turns out to be

empty, we count just C

3

during the backward phase

to get L

3

.

4 Performance

To assess the relative performance of the algorithms

and study their scale-up properties, we performed sev-

eral experiments on an IBM RS/6000 530H worksta-

tion with a CPU clock rate of 33 MHz, 64 MB of main

memory, and running AIX 3.2. The data resided in the

AIX �le system and was stored on a 2GB SCSI 3.5"

drive, with measured sequential throughput of about

2 MB/second.

4.1 Generation of Synthetic Data

To evaluate the performance of the algorithms over

a large range of data characteristics, we generated syn-

thetic customer transactions. environment. In our

model of the \real" world, people buy sequences of

sets of items. Each such sequence of itemsets is po-

tentially a maximal large sequence. An example of

such a sequence might be sheets and pillow cases,

followed by a comforter, followed by shams and ruf-

es. However, some people may buy only some of the

items from such a sequence. For instance, some peo-

ple might buy only sheets and pillow cases followed by

a comforter, and some only comforters. A customer-

sequence may contain more than one such sequence.

For example, a customer might place an order for a

dress and jacket when ordering sheets and pillow cases,

where the dress and jacket together form part of an-

other sequence. Customer-sequence sizes are typically

clustered around a mean and a few customers may

have many transactions. Similarly, transaction sizes

are usually clustered around a mean and a few trans-

actions have many items.

The synthetic data generation program takes the

parameters shown in Table 1. We generated datasets

jDj Number of customers (= size of Database)

jCj Average number of transactions per Customer

jT j Average number of items per Transaction

jSj Average length of maximal potentially

large Sequences

jIj Average size of Itemsets in maximal

potentially large sequences

N

S

Number of maximal potentially large Sequences

N

I

Number of maximal potentially large Itemsets

N Number of items

Table 1: Parameters

Name jCj jT j jSj jIj Size

(MB)

C10-T5-S4-I1.25 10 5 4 1.25 5.8

C10-T5-S4-I2.5 10 5 4 2.5 6.0

C20-T2.5-S4-I1.25 20 2.5 4 1.25 6.9

C20-T2.5-S8-I1.25 20 2.5 8 1.25 7.8

Table 2: Parameter settings (Synthetic datasets)

by setting N

S

= 5000, N

I

= 25000 and N = 10000.

The number of customers, jDj was set to 250,000. Ta-

ble 2 summarizes the dataset parameter settings. We

refer the reader to [3] for the details of the data gen-

eration program.

4.2 Relative Performance

Fig. 14 shows the relative execution times for the

three algorithms for the six datasets given in Table 2

as the minimumsupport is decreased from 1% support

to 0.2% support. We have not plotted the execution

times for DynamicSome for low values of minimum

support since it generated too many candidates and

ran out of memory. Even if DynamicSome had more

memory, the cost of �nding the support for that many

candidates would have ensured execution times much

larger than those for Apriori or AprioriSome. As ex-

pected, the execution times of all the algorithms in-

crease as the support is decreased because of a large

increase in the number of large sequences in the result.

DynamicSome performs worse than the other two

algorithms mainly because it generates and counts

a much larger number of candidates in the forward

phase. The di�erence in the number of candidates gen-

erated is due to the otf-generate candidate genera-

tion procedure it uses. The apriori-generate does

not count any candidate sequence that contains any

subsequence which is not large. The otf-generate

does not have this pruning capability.

The major advantage of AprioriSome over Aprior-

iAll is that it avoids counting many non-maximal se-

C10-T5-S4-I1.25 C10-T5-S4-I2.5

0

50

100

150

200

250

300

350

400

450

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

C20-T2.5-S4-I1.25 C20-T2.5-S8-I1.25

0

100

200

300

400

500

600

700

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

0

200

400

600

800

1000

1200

1400

0.20.250.330.50.751

T
im

e
 (

se
c)

Minimum Support

DynamicSome
Apriori

AprioriSome

Figure 14: Execution times

quences. However, this advantage is reduced because

of two reasons. First, candidates C

k

in AprioriAll

are generated using L

k�1

, whereas AprioriSome some-

times uses C

k�1

for this purpose. Since C

k�1

� L

k�1

,

the number of candidates generated using Apriori-

Some can be larger. Second, although AprioriSome

skips over counting candidates of some lengths, they

are generated nonetheless and stay memory resident.

If memory gets �lled up, AprioriSome is forced to

count the last set of candidates generated even if the

heuristic suggests skipping some more candidate sets.

This e�ect decreases the skipping distance between

the two candidate sets that are indeed counted, and

AprioriSome starts behaving more like AprioriAll. For

lower supports, there are longer large sequences, and

hence more non-maximal sequences, and AprioriSome

does better.

4.3 Scale-up

Wewill present in this section the results of scale-up

experiments for the AprioriSome algorithm. We also

performed the same experiments for AprioriAll, and

found the results to be very similar. We do not re-

port the AprioriAll results to conserve space. We will

present the scale-up results for some selected datasets.

Similar results were obtained for other datasets.

Fig. 15 shows how AprioriSome scales up as the

number of customers is increased ten times from

250,000 to 2.5million. (The scale-up graph for increas-

ing the number of customers from 25,000 to 250,000

looks very similar.) We show the results for the

1

2

4

6

8

10

250 1000 1750 2500

R
e
la

tiv
e
 T

im
e

Number of Customers (’000s)

2%
1%

0.5%

Figure 15: Scale-up : Number of customers

dataset C10-T2.5-S4-I1.25 with three levels of mini-

mum support. The size of the dataset for 2.5 million

customers was 368 MB. The execution times are nor-

malized with respect to the times for the 250,000 cus-

tomers dataset. As shown, the execution times scale

quite linearly.

Next, we investigated the scale-up as we increased

the total number of items in a customer sequence.

This increase was achieved in two di�erent ways: i)

by increasing the average number of transactions per

customer, keeping the average number of items per

transaction the same; and ii) by increasing the av-

erage number of items per transaction, keeping the

average number transactions per customer the same.

The aim of this experiment was to see how our data

structures scaled with the customer-sequence size, in-

dependent of other factors like the database size and

the number of large sequences. We kept the size of the

database roughly constant by keeping the product of

the average customer-sequence size and the number of

customers constant. We �xed the minimum support

in terms of the number of transactions in this exper-

iment. Fixing the minimum support as a percentage

would have led to large increases in the number of

large sequences and we wanted to keep the size of the

answer set roughly the same. All the experiments had

the large sequence length set to 4 and the large item-

set size set to 1.25. The average transaction size was

set to 2.5 in the �rst graph, while the number of trans-

actions per customer was set to 10 in the second. The

numbers in the key (e.g. 100) refer to the minimum

support.

The results are shown in Fig. 16. As shown, the

execution times usually increased with the customer-

sequence size, but only gradually. The main reason

for the increase was that in spite of setting the min-

imum support in terms of the number of customers,

the number of large sequences increased with increas-

ing customer-sequence size. A secondary reason was

that �nding the candidates present in a customer se-

quence took a little more time. For support level of

200, the execution time actually went down a little

when the transaction size was increased. The reason

for this decrease is that there is an overhead associated

with reading a transaction. At high level of support,

this overhead comprises a signi�cant part of the total

execution time. Since this decreases when the number

of transactions decrease, the total execution time also

decreases a little.

5 Conclusions and Future Work

We introduced a new problem of mining sequential

patterns from a database of customer sales transac-

tions and presented three algorithms for solving this

problem. Two of the algorithms, AprioriSome and

AprioriAll, have comparable performance, although

AprioriSome performs a little better for the lower val-

ues of the minimum number of customers that must

support a sequential pattern. Scale-up experiments

show that both AprioriSome and AprioriAll scale lin-

early with the number of customer transactions. They

also have excellent scale-up properties with respect to

the number of transactions in a customer sequence and

the number of items in a transaction.

In some applications, the user may want to know

the ratio of the number of people who bought the

�rst k + 1 items in a sequence to the number of

people who bought the �rst k items, for 0 < k <

length of sequence. In this case, we will have to make

an additional pass over the data to get counts for all

pre�xes of large sequences if we were using the Apri-

oriSome algorithms. With the AprioriAll algorithm,

we already have these counts. In such applications,

therefore, AprioriAll will become the preferred algo-

rithm.

These algorithms have been implemented on several

data repositories, including the AIX �le system and

DB2/6000, as part of the Quest project, and have been

run against data from several data. In the future, we

plan to extend this work along the following lines:

� Extension of the algorithms to discover sequential

patterns across item categories. An example of

such a category is that a dish washer is a kitchen

appliance is a heavy electric appliance, etc.

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50

R
e
la

tiv
e
 T

im
e

of Transactions Per Customer

200
100
50

0

0.5

1

1.5

2

2.5

3

2.5 5 7.5 10 12.5

R
e
la

tiv
e
 T

im
e

Transaction Size

200
100
50

Figure 16: Scale-up : Number of Items per Customer

� Transposition of constraints into the discovery al-

gorithms. There could be item constraints (e.g.

sequential patterns involving home appliances) or

time constraints (e.g. the elements of the patterns

should come from transactions that are at least d

1

and at most d

2

days apart.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large

databases. In Proc. of the ACM SIGMOD Con-

ference on Management of Data, pages 207{216,

Washington, D.C., May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms

for mining association rules. In Proc. of the

VLDB Conference, Santiago, Chile, September

1994. Expanded version available as IBM Re-

search Report RJ9839, June 1994.

[3] R. Agrawal and R. Srikant. Mining sequential

patterns. Research Report RJ 9910, IBM Al-

maden Research Center, San Jose, California, Oc-

tober 1994.

[4] S. Altschul, W. Gish, W. Miller, E. Myers, and

D. Lipman. A basic local alignment search tool.

Journal of Molecular Biology, 1990.

[5] A. Califano and I. Rigoutsos. Flash: A fast look-

up algorithm for string homology. In Proc. of the

1st International Converence on Intelligent Sys-

tems for Molecular Biology, Bethesda, MD, July

1993.

[6] T. G. Dietterich and R. S. Michalski. Discovering

patterns in sequences of events. Arti�cial Intelli-

gence, 25:187{232, 1985.

[7] L. Hui. Color set size problem with applica-

tions to string matching. In A. Apostolico,

M. Crochemere, Z. Galil, and U. Manber, ed-

itors, Combinatorial Pattern Matching, LNCS

644, pages 230{243. Springer-Verlag, 1992.

[8] M. Roytberg. A search for common patterns in

many sequences. Computer Applications in the

Biosciences, 8(1):57{64, 1992.

[9] M. Vingron and P. Argos. A fast and sensitive

multiple sequence alignment algorithm. Com-

puter Applications in the Biosciences, 5:115{122,

1989.

[10] J. T.-L. Wang, G.-W. Chirn, T. G. Marr,

B. Shapiro, D. Shasha, and K. Zhang. Combina-

torial pattern discovery for scienti�c data: Some

preliminary results. In Proc. of the ACM SIG-

MOD Conference on Management of Data, Min-

neapolis, May 1994.

[11] M. Waterman, editor. Mathematical Methods for

DNA Sequence Analysis. CRC Press, 1989.

[12] S. Wu and U. Manber. Fast text searching al-

lowing errors. Communications of the ACM,

35(10):83{91, October 1992.

