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Abstract| In this paper we propose two new parallel for-

mulations of the Apriori algorithm that is used for computing

association rules. These new formulations, IDD and HD, ad-

dress the shortcomings of two previously proposed parallel

formulations CD and DD. Unlike the CD algorithm, the IDD

algorithm partitions the candidate set intelligently among

processors to e�ciently parallelize the step of building the

hash tree. The IDD algorithm also eliminates the redun-

dant work inherent in DD, and requires substantially smaller

communication overhead than DD. But IDD su�ers from the

added cost due to communication of transactions among pro-

cessors. HD is a hybrid algorithm that combines the advan-

tages of CD and DD. Experimental results on a 128-processor

Cray T3E show that HD scales just as well as the CD algo-

rithm with respect to the number of transactions, and scales

as well as IDD with respect to increasing candidate set size.

Keywords| Data mining, parallel processing, association

rules, load balance, scalability.

I. Introduction

One of the important problems in data mining [1] is dis-

covering association rules from databases of transactions,

where each transaction contains a set of items. The most

time consuming operation in this discovery process is the

computation of the frequencies of the occurrence of subsets

of items, also called candidates, in the database of trans-

actions. Since usually such transaction-based databases

contain a large number of distinct items, the total num-

ber of candidates is prohibitively large. Hence, current

association rule discovery techniques [2], [3], [4], [5] try to

prune the search space by requiring a minimum level of

support for candidates under consideration. Support is a

measure of the number of occurrences of the candidates in

database transactions. Apriori [2] is a recent state-of-the-

art algorithm that aggressively prunes the set of potential

candidates of size k by using the following observation: a

candidate of size k can meet the minimum level of sup-

port only if all of its subsets also meet the minimum level

of support. In the k

th

iteration, this algorithm computes

the occurrences of potential candidates of size k in each

of the transactions. To do this task e�ciently, the algo-

rithm maintains all potential candidates of size k in a hash

tree. This algorithm does not require the transactions to

stay in main memory, but requires the hash trees to stay in

main memory. If the entire hash tree cannot �t in the main

memory, then the hash tree needs to be partitioned, and

multiple passes over the transaction database need to be

performed (one for each partition of the hash tree). Even

with the highly e�ective pruning method of Apriori, the

task of �nding all association rules in many applications

can require a lot of computation power that is available

only in parallel computers.

Two parallel formulations of the Apriori algorithm were

proposed in [6], Count Distribution (CD) and Data Dis-

tribution (DD). The CD algorithm scales linearly and has

excellent speedup and sizeup behavior with respect to the

number of transactions [6]. However, there are two prob-

lems with this algorithm. First, it does not parallelize the

computation for building the hash tree. On a serial al-

gorithm, this step takes relatively small amount of time.

But on parallel computations, it can become a major bot-

tleneck. Second, if the hash tree does not �t in the main

memory, then the extra disk I/O for the multiple passes

over the transaction database can be expensive on machines

with slow I/O systems. Hence, the CD algorithm, like its

sequential counterpart Apriori, is unscalable with respect

to the increasing size of candidate set. The DD algorithm

addresses these problems of the CD algorithm by partition-

ing the candidate set and assigning a partition to each pro-

cessor in the system. However, this algorithm su�ers from

three types of ine�ciency. First, the algorithm results in

high communication overhead due to an ine�cient scheme

used for data movement. Second, the schedule for interac-

tions among processors is such that it can cause processors

to idle. Third, each transaction has to be processed against

multiple hash trees causing redundant computation.

In this paper, we present two new parallel formulations of

the Apriori algorithm for mining association rules. We �rst

present Intelligent Data Distribution (IDD) algorithm that

improves upon the DD algorithm by minimizing communi-

cation overhead and processor idling time, and by eliminat-

ing redundant computation. However, the static partition-

ing of the hash tree results in load imbalance that becomes

severe for large number of processors. Furthermore, even

with the optimized communication scheme, the communi-

cation overhead of IDD grows linearly with the number of

transactions. Our second formulation, the Hybrid Distri-

bution (HD) algorithm, combines the advantages of both

the CD algorithm and the IDD algorithm by dynamically

grouping processors and partitioning the candidate set ac-

cordingly to maintain good load balance. The experimen-

tal results on a Cray T3E parallel computer show that the

HD algorithm scales very well and exploits the aggregate

memory e�ciently.

The rest of this paper is organized as follows. Section II

provides an overview of the serial algorithm for mining as-

sociation rules. Section III describes existing and proposed

parallel algorithms. Section IV presents the performance

analysis of the algorithms. Experimental results are shown

in Section V. Section VI contains conclusions. A prelimi-

nary version of this paper appeared in [7].

II. Basic Concepts

Let T be the set of transactions where each transaction

is a subset of the item-set I . Let C be a subset of I , then
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TABLE I

Transactions from supermarket.

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

we de�ne the support count of C with respect to T to be:

�(C) = jftjt 2 T;C � tgj:

Thus �(C) is the number of transactions that contain C.

For example, consider a set of transactions from supermar-

ket as shown in Table I. The items set I for these transac-

tions is fBread, Beer, Coke, Diaper, Milkg. The support

count of fDiaper, Milkg is �(Diaper;Milk) = 3, whereas

�(Diaper;Milk;Beer) = 2.

An association rule is an expression of the formX

s;�

=) Y ,

where X � I and Y � I . The support s of the rule

X

s;�

=) Y is de�ned as �(X [ Y )=jT j, and the con�dence

� is de�ned as �(X [ Y )=�(X). For example, consider a

rule fDiaper, Milkg =) fBeerg, i.e. presence of diaper

and milk in a transaction tends to indicate the presence

of beer in the transaction. The support of this rule is

�(Diaper;Milk;Beer)=5 = 40%. The con�dence of this

rule is �(Diaper;Milk;Beer)=�(Diaper;Milk) = 66%. A

rule that has a very high con�dence (i.e., close to 1.0) is

often very important, because it provides an accurate pre-

diction on the association of the items in the rule. The

support of a rule is also important, since it indicates how

frequent the rule is in the transactions. Rules that have

very small support are often uninteresting, since they do

not describe signi�cantly large populations. This is one of

the reasons why most algorithms [2], [3], [4] disregard any

rules that do not satisfy the minimum support condition

speci�ed by the user. This �ltering due to the minimum

required support is also critical in reducing the number of

derived association rules to a manageable size. Note that

the total number of possible rules is proportional to the

number of subsets of the item-set I , which is 2

jIj

. Hence

the �ltering is absolutely necessary in most practical set-

tings.

The task of discovering an association rule is to �nd all

rules X

s;�

=) Y , such that s is greater than or equal to a

given minimum support threshold and � is greater than or

equal to a given minimum con�dence threshold. The asso-

ciation rule discovery is composed of two steps. The �rst

step is to discover all the frequent item-sets (candidate sets

that have more support than the minimum support thresh-

old speci�ed). The second step is to generate association

rules from these frequent item-sets. The computation of

�nding the frequent item-sets is much more expensive than

�nding the rules from these frequent item-sets. Hence in

this paper, we only focus on the �rst step. The parallel

1. F

1

= f frequent 1-item-setsg ;

2. for ( k = 2; F

k�1

6= �; k++ ) f

3. C

k

= apriori gen(F

k�1

)

4. for all transactions t 2 T f

5. subset(C

k

, t)

6. g

7. F

k

= fc 2 C

k

j c.count � minsupg

8. g

9. Answer =

S

F

k

Fig. 1. Apriori Algorithm

implementation of the second step is straightforward and

is discussed in [6].

A number of sequential algorithms have been developed

for discovering frequent item-sets [8], [2], [3]. Our paral-

lel algorithms are based on the Apriori algorithm [2] that

has smaller computational complexity compared to other

algorithms. In the rest of this section, we brie
y describe

the Apriori algorithm. The reader should refer to [2] for

further details.

The high level structure of the Apriori algorithm is given

in Figure 1. The Apriori algorithm consists of a number

of passes. Initially F

1

contains all the items (i.e., item set

of size one) that satisfy the minimum support requirement.

During pass k, the algorithm �nds the set of frequent item-

sets F

k

of size k that satisfy the minimum support require-

ment. The algorithm terminates when F

k

is empty. In each

pass, the algorithm �rst generates C

k

, the candidate item-

sets of size k. Function apriori gen(F

k�1

) constructs C

k

by

extending frequent item-sets of size k�1. This ensures that

all the subsets of size k� 1 of a new candidate item-set are

in F

k�1

. Once the candidate item-sets are found, their fre-

quencies are computed by counting how many transactions

contain these candidate item-sets. Finally, F

k

is gener-

ated by pruning C

k

to eliminate item-sets with frequencies

smaller than the minimum support. The union of the fre-

quent item-sets,

S

F

k

, is the frequent item-sets from which

we generate association rules.

Computing the counts of the candidate item-sets is the

most computationally expensive step of the algorithm. One

naive way to compute these counts is to perform string-

matching of each transaction against each candidate item-

set. A faster way of performing this operation is to use

a candidate hash tree in which the candidate item-sets are

hashed [2]. Here we explain this via an example to facilitate

the discussions of parallel algorithms and their analysis.

Figure 2 shows one example of the candidate hash tree

with candidates of size 3. The internal nodes of the hash

tree have hash tables that contain links to child nodes. The

leaf nodes contain the candidate item-sets. A hash tree of

candidate item-sets is constructed as follows. Initially, the

hash tree contains only a root node, which is a leaf node

containing no candidate item-set. When each candidate

item-set is generated, the items in the set are stored in

sorted order. Note that since C

1

and F

1

are created in



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 3

2,5,8

1,4,7 3,6,9

Hash Function

1 2 3 5 6

3 4 5 3 5 6

2 3 5 6

3 5 6

5 6

1  +

2  +

3  +

2 3 4

Transaction

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Fig. 2. Subset operation on the root of a candidate hash tree.

sorted order, each candidate set is generated in sorted or-

der without any need for explicit sorting. Each candidate

item-set is inserted into the hash tree by hashing each suc-

cessive item at the internal nodes and then following the

links in the hash table. Once a leaf is reached, the candi-

date item-set is inserted at the leaf if the total number of

candidate item-sets are less than the maximum allowed. If

the total number of candidate item-sets at the leaf exceeds

the maximum allowed and the depth of the leaf is less than

k, the leaf node is converted into an internal node and child

nodes are created for the new internal node. The candidate

item-sets are distributed to the child nodes according to the

hash values of the items. For example, the candidate item

set f1 2 4g is inserted by hashing item 1 at the root to reach

the left child node of the root, hashing item 2 at that node

to reach the middle child node, hashing item 3 to reach the

left child node which is a leaf node.

The subset function traverses the hash tree from the root

with every item in a transaction as a possible starting item

of a candidate. In the next level of the tree, all the items

of the transaction following the starting item are hashed.

This is done recursively until a leaf is reached. At this

1 2 3 5 6

3 4 5 3 5 6

3  5  61  2  +

1  3  + 5  6

1  5  + 6

2 3 5 6

3 5 6

5 6

1  +

2  +

3  +

2 3 4

Transaction

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Candidate Hash Tree

Fig. 3. Subset operation on the left most subtree of the root of a

candidate hash tree.

time, all the candidates at the leaf are checked against the

transaction and their counts are updated accordingly. Fig-

ure 2 shows the subset operation at the �rst level of the

tree with transaction f1 2 3 5 6g. The item 1 is hashed to

the left child node of the root and the following transac-

tion f2 3 5 6g is applied recursively to the left child node.

The item 2 is hashed to the middle child node of the root

and the whole transaction is checked against two candidate

item-sets in the middle child node. Then item 3 is hashed

to the right child node of the root and the following trans-

action f5 6g is applied recursively to the right child node.

Figure 3 shows the subset operation on the left child node

of the root. Here the items 2 and 5 are hashed to the mid-

dle child node and the following transactions f3 5 6g and

f6g respectively are applied recursively to the middle child

node. The item 3 is hashed to the right child node and the

remaining transaction f5 6g is applied recursively to the

right child node.

III. Parallel Algorithms

In this section, we will focus on the parallelization of the

task that �nds all frequent item-sets. We �rst discuss two

parallel algorithms proposed in [6] to help motivate our

parallel formulations. We also brie
y discuss other paral-

lel algorithms. In all our discussions, we assume that the

transactions are evenly distributed among the processors.

A. Count Distribution Algorithm

In the Count Distribution (CD) algorithm proposed

in [6], each processor computes how many times all the can-

didates appear in the locally stored transactions. This is

done by building the entire hash tree that corresponds to all

the candidates and then performing a single pass over the

locally stored transactions to collect the counts. The global

counts of the candidates are computed by summing these
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individual counts using a global reduction operation [9].

This algorithm is illustrated in Figure 4. Note that since

each processor needs to build a hash tree for all the can-

didates, these hash trees are identical at each processor.

Thus, excluding the global reduction, each processor in the

CD algorithm executes the serial Apriori algorithm on the

locally stored transactions.

This algorithm has been shown to scale linearly with the

number of transactions [6]. This is because each processor

can compute the counts independently of the other proces-

sors and needs to communicate with the other processors

only once at the end of the computation step. However, this

algorithm does not parallelize the computation of building

the candidate hash tree. This step becomes a bottleneck

with large number of processors. Furthermore, if the num-

ber of candidates is large, then the hash tree does not �t

into the main memory. In this case, this algorithm has to

partition the hash tree and compute the counts by scan-

ning the database multiple times, once for each partition of

the hash tree. The cost of extra database scanning can be

expensive in the machines with slow I/O system. Note that

the number of candidates increases if either the number of

distinct items in the database increases or if the minimum

support level of the association rules decreases. Thus the

CD algorithm is e�ective for small number of distinct items

and a high minimum support level.

B. Data Distribution Algorithm

The Data Distribution (DD) algorithm [6] addresses the

memory problem of the CD algorithm by partitioning the

candidate item-sets among the processors. This partition-

ing is done in a round robin fashion. Each processor is

responsible for computing the counts of its locally stored

subset of the candidate item-sets for all the transactions in

the database. In order to do that, each processor needs to

scan the portions of the transactions assigned to the other

processors as well as its locally stored portion of the trans-

actions. In the DD algorithm, this is done by having each

processor receive the portions of the transactions stored in

the other processors as follows. Each processor allocates

P bu�ers (each one page long and one for each processor).

At processor P

i

, the i

th

bu�er is used to store transactions

from the locally stored database and the remaining bu�ers

are used to store transactions from the other processors.

Now each processor P

i

checks the P bu�ers to see which

one contains data. Let l be this bu�er (ties are broken in

favor of bu�ers of other processors and ties among bu�ers

of other processors are broken arbitrarily). The proces-

sor processes the transactions in this bu�er and updates

the counts of its own candidate subset. If this bu�er cor-

responds to the bu�er that stores local transactions (i.e.,

l = i), then it is sent to all the other processors (via asyn-

chronous sends), and a new page is read from the local

database. If this bu�er corresponds to a bu�er that stores

transactions from another processor (i.e., l 6= i), then it is

cleared and this bu�er is marked available for next asyn-

chronous receive from any other processors. This continues

until every processor has processed all the transactions.

Having computed the counts of its candidate item-sets,

each processor �nds the frequent item-sets from its candi-

date item-set and these frequent item-sets are sent to every

other processor using an all-to-all broadcast operation [9].

Figure 5 shows the high level operations of the algorithm.

Note that each processor has a di�erent set of candidates

in the candidate hash tree.

This algorithm exploits the total available memory bet-

ter than CD, as it partitions the candidate set among pro-

cessors. As the number of processors increases, the number

of candidates that the algorithm can handle also increases.

However, as reported in [6], the performance of this algo-

rithm is signi�cantly worse than the CD algorithm. The

run time of this algorithm is 10 to 20 times more than that

of the CD algorithm on 16 processors [6]. The problem

lies with the communication pattern of the algorithm and

the redundant work that is performed in processing all the

transactions.

The communication pattern of this algorithm causes

three problems. First, during each pass of the algorithm

each processor sends to all the other processors the portion

of the database that resides locally. In particular, each

processor reads the locally stored portion of the database

one page at a time and sends it to all the other processors

by issuing P � 1 send operations. Similarly, each processor

issues a receive operation from each other processor in or-

der to receive these pages. If the interconnection network

of the underlying parallel computer is fully connected (i.e.,

there is a direct link between all pairs of processors) and

each processor can receive data on all incoming links si-

multaneously, then this communication pattern will lead

to a very good performance. In particular, if O(N=P ) is

the size of the database assigned locally to each proces-

sor, the amount of time spent in the communication will

be O(N=P ). However, even on the parallel computer with

fully connected network, if each processor can receive data

from (or send data to) only one other processor at a time,

then the communication will be O(N). On all realistic par-

allel computers, the processors are connected via a sparser

networks (such as 2D, 3D or hypercube) and a processor

can receive data from (or send data to) only one other

processor at a time. On such machines, this communica-

tion pattern will take signi�cantly more than O(N) time

because of contention within the network.

Second, in architectures without asynchronous commu-

nication support and with �nite number of communication

bu�ers in each processor, the proposed all-to-all commu-

nication scheme causes processors to idle. For instance,

consider the case when one processor �nishes its operation

on local data and sends the bu�er to all other processors.

Now if the communication bu�er of any receiving proces-

sors is full and the outgoing communication bu�ers are full,

then the send operation is blocked.

Third, if we look at the size of the candidate sets as a

function of the number of passes of the algorithm, we see

that in the �rst few passes, the size of the candidate sets

increases and after that it decreases. In particular, during

the last several passes of the algorithm, there are only a
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small number of items in the candidate sets. However,

each processor in the DD algorithm still sends the locally

stored portions of the database to all the other processors.

Thus, even though the computation decreases, the amount

of communication remains the same.

The redundant work is introduced due to the fact that

every processor has to process every single transaction in

the database. In CD (see Figure 4), only N=P transactions

go through each hash tree ofM candidates, whereas in DD

(see Figure 5), all N transactions have to go through each

hash tree of M=P candidates. Although, the number of

candidates stored at each processor has been reduced by

a factor of P , the amount of computation performed for

each transaction has not been proportionally reduced. If

the amount of work required for each transaction to be

checked against the hash tree of M=P candidates is 1=P

of that of the hash tree of M candidates, then there is no

extra work. As discussed in Section IV, in general, the

amount of work per transaction will go down by a factor

much smaller than P .

C. Intelligent Data Distribution Algorithm

We developed the Intelligent Data Distribution (IDD) al-

gorithm that solves the problems of the DD algorithm dis-

cussed in Section III-B. In IDD, the locally stored portions

of the database are sent to all the other processors by using

a ring-based all-to-all broadcast described in [9]. This op-

eration does not su�er from the contention problems of the

DD algorithm and it takes O(N) time on any parallel archi-

tecture that can be embedded in a ring. Figure 6 shows the

pseudo code for this data movement operation. In our algo-

rithm, the processors form a logical ring and each processor

determines its right and left neighboring processors. Each

processor has one send bu�er (SBuf) and one receive bu�er

(RBuf). Initially, the SBuf is �lled with one block of local

data. Then each processor initiates an asynchronous send

operation to the right neighboring processor with SBuf and

an asynchronous receive operation to the left neighboring

processor with RBuf. While these asynchronous operations

are proceeding, each processor processes the transactions in

SBuf and collects the counts of the candidates assigned to

the processor. After this operation, each processor waits

until these asynchronous operations complete. Then the

roles of SBuf and RBuf are switched and the above opera-

tions continue for P �1 times. Compared to DD, where all

the processors send data to all other processors, we perform

only a point-to-point communication between neighbors,

thus eliminating any communication contention. Further-

more, if the time to process a bu�er does not vary much,

then there is little time lost in idling.

In order to eliminate the redundant work due to the par-

titioning of the candidate item-sets, we must �nd a fast way

to check whether a given transaction can potentially con-

tain any of the candidates stored at each processor. This

cannot be done by partitioning C

k

in a round-robin fashion.

However, if we partition C

k

among processors in such a way

that each processor gets item-sets that begin only with a

subset of all possible items, then we can check the items of

while (!done) f

FillBu�er(fd, SBuf);

for (k = 0; k < P-1; ++k) f

/* send/receive data in non-blocking pipeline */

MPI Irecv(RBuf, left);

MPI Isend(SBuf, right);

/* process transactions in SBuf and update hash tree */

Subset(HTree, SBuf);

MPI Waitall();

/* swap two bu�ers */

tmp = SBuf;

SBuf = RBuf;

RBuf = tmp;

g

/* process transactions in SBuf and update hash tree */

Subset(HTree, SBuf);

g

Fig. 6. Pseudo Code for Data Movements

a transaction against this subset to determine if the hash

tree contains candidates starting with these items. We tra-

verse the hash tree with only the items in the transaction

that belong to this subset. Thus, we solve the redundant

work problem of DD by the intelligent partitioning of C

k

.

Figure 7 shows the high level picture of the algorithm.

In this example, Processor 0 has all the candidates starting

with items 1 and 7, Processor 1 has all the candidates start-

ing with 2 and 5, and so on. Each processor keeps the �rst

items of the candidates it has in a bit-map. In the Apri-

ori algorithm, at the root level of hash tree, every item in

a transaction is hashed and checked against the hash tree.

However, in our algorithm, at the root level, each processor

�lters every item of the transaction by checking against the

bit-map to see if the processor contains candidates start-

ing with that item of the transaction. If the processor does

not contain the candidates starting with that item, the pro-

cessing steps involved with that item as the �rst item in

the candidate can be skipped. This reduces the amount

of transaction data that has to go through the hash tree;

thus, reducing the computation. For example, let f1 2 3

4 5 6 7 8g be a transaction that processor 0 is processing

in the subset function discussed in Section II. At the top

level of the hash tree, processor 0 will only proceed with

items 1 and 7 (i.e., 1 + 2 3 4 5 6 7 8 and 7 + 8). When the

page containing this transaction is shifted to processor 1,

this processor will only process items starting with 2 and 5

(i.e., 2 + 3 4 5 6 7 8 and 5 + 6 7 8). Figure 8 shows how this

scheme works when a processor contains only those candi-

date item-sets that start with 1, 3 and 5. Thus for each

transaction in the database, our approach partitions the

amount of work to be performed among processors, thus

eliminating most of the redundant work of DD. Note that

both the judicious partitioning of the hash tree (indirectly

caused by the partitioning of candidate item-set) and the

�ltering step are required to eliminate this redundant work.

The intelligent partitioning of the candidate set used in

IDD requires our algorithm to have a good load balancing.
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Fig. 7. Intelligent Data Distribution (IDD) Algorithm
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Fig. 8. Subset operation on the root of a candidate hash tree in IDD.

One of the criteria of a good partitioning involved here is

to have an equal number of candidates in all the proces-

sors. This gives about the same size hash tree in all the

processors and thus provides good load balancing among

processors. Note that in the DD algorithm, this was accom-

plished by distributing candidates in a round robin fashion.

A naive method for assigning candidates to processors can

lead to a signi�cant load imbalance. For instance, consider

a database with 100 distinct items numbered from 1 to 100

and that the database transactions have more data items

numbered with 1 to 50. If we partition the candidates be-

tween two processors and assign all the candidates starting

with items 1 to 50 to processor P

0

and candidates starting

with items 51 to 100 to processor P

1

, then there would be

more work for processor P

0

.

To achieve an equal distribution of the candidate item-

sets, we use a partitioning algorithm that is based on bin-

packing [10]. For each item, we �rst compute the number of

candidate item-sets starting with this particular item. Note

that at this time we do not actually store the candidate

item-sets, but just store the number of candidate item-sets

starting with each item. We then use a bin-packing algo-

rithm to partition these items in P buckets such that the

sum of numbers of the candidate item-sets starting with

these items in each bucket are roughly equal. Once the lo-

cation of each candidate item-set is determined, then each

processor locally regenerates and stores candidate item-sets

that are assigned to this processor. Note that bin-packing

is used per pass of the algorithm and the amount of time

spent on bin-packing is minor compared to the overall run-

time. Figure 7 shows the partitioned candidate hash tree

and its corresponding bitmaps in each processor.

Note that this scheme will not be able to achieve an

equal distribution of candidates if there are too many can-

didate itemsets starting with the same item. For example,

if there are more than M=P candidates starting with the

same item, then one processor containing candidates start-

ing with this item will have more than M=P candidates

even if no other candidates are assigned to it. This problem

gets more serious with increasing P . One way of handling

this problem is to partition candidate item sets based on
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more than the �rst items of the candidate item sets. In

this approach, whenever the number of candidates starting

with one particular item is greater than the threshold, this

item set is further partitioned using the second item of the

candidate item sets.

Note that the equal assignment of candidates to the pro-

cessors does not guarantee the perfect load balance among

processors. This is because the cost of traversal and check-

ing at the leaf node are determined not only by the size and

shape of the candidate hash tree, but also by the actual

items in the transactions. However, in our experiments,

we have observed a reasonably good correlation between

the size of candidate sets and the amount of work done by

each processor. For example, with 4 processors, we were

able to obtain the the load imbalance of 1.3% in terms

of the number of candidate sets, and this translated into

5.4% load imbalance in the actual computation time. With

8 processors, we had 2.3% load imbalance in the number of

candidate sets, and this resulted in 9.4% load imbalance in

the computation time. Since the e�ect of transactions on

the work load cannot be easily estimated in advance, our

scheme only ensures that each processor has roughly equal

number of candidate itemsets in the local hash tree.

D. Hybrid Algorithm

The IDD algorithm exploits the total system memory by

partitioning the candidate set among all processors. The

average number of candidates assigned to each processor is

M=P , whereM is the number of total candidates. As more

processors are used, the number of candidates assigned to

each processor decreases. This has two implications. First,

with fewer number of candidates per processor, it is much

more di�cult to balance the work. Second, the smaller

number of candidates gives a smaller hash tree and less

computation work per transaction. Eventually the amount

of computation may become less than the communication

involved. This would be more evident in the later passes

of the algorithm as the hash tree size further decreases

dramatically. This reduces overall e�ciency of the parallel

algorithm. This will be an even more serious problem in a

system that cannot perform asynchronous communication.

The Hybrid Distribution (HD) algorithm addresses the

above problem by combining the CD and the IDD algo-

rithms in the following way. Consider a P -processor system

in which the processors are split into G equal size groups,

each containing P=G processors. In the HD algorithm, we

execute the CD algorithm as if there were only P=G proces-

sors. That is, we partition the transactions of the database

into P=G parts each of size N=(P=G), and assign the task

of computing the counts of the candidate set C

k

for each

subset of the transactions to each one of these groups of

processors. Within each group, these counts are computed

using the IDD algorithm. That is, the transactions and the

candidate set C

k

are partitioned among the processors of

each group, so that each processor gets roughly jC

k

j=G can-

didate item-sets andN=P transactions. Now, each group of

processors computes the counts using the IDD algorithm,

and the overall counts are computing by performing a re-

duction operation among the P=G groups of processors.

The HD algorithm can be better visualized if we think of

the processors as being arranged in a two dimensional grid

of G rows and P=G columns. The transactions are parti-

tioned equally among the P processors. The candidate set

C

k

is partitioned among the processors of each column of

this grid. This partitioning of C

k

is identical for each col-

umn of processors; i.e., the processors along each row of the

grid get the same subset of C

k

. Figure 9 illustrates the HD

algorithm for a 3�4 grid of processors. In this example, the

HD algorithm executes the CD algorithm as if there were

only 4 processors, where the 4 processors correspond to the

4 processor columns. That is, the database transactions are

partitioned in 4 parts, and each one of these 4 hypotheti-

cal processors computes the local counts of all the candi-

date item-sets. Then the global counts can be computed

by performing the global reduction operation discussed in

Section III-A. However, since each one of these hypotheti-

cal processors is made up of 3 processors, the computation

of local counts of the candidate item-sets in a hypotheti-

cal processor requires the computation of the counts of the

candidate item-sets on the database transactions sitting on

the 3 processors. This operation is performed by executing

the IDD algorithm within each of 4 hypothetical processors.

This is shown in the step 1 of Figure 9. Note that proces-

sors in the same row have exactly the same candidates, and

candidate sets along the each column partition the total

candidate set. At the end of this operation, each processor

has complete count of its local candidates for all the trans-

actions located in the processors of the same column (i.e.,

of a hypothetical processor). Now a reduction operation is

performed along the rows such that all processors in each

row have the sum of the counts for the candidates in the

same row. At this point, the count associated with each

candidate item-set corresponds to the entire database of

transactions. Now each processor �nds frequent item-sets

by dropping all those candidate item-sets whose frequency

is less than the threshold for minimum support. These

candidate item-sets are shown as shaded in Figure 9(b). In

the next step, each processor performs all-to-all broadcast

operation along the columns of the processor mesh. At

this point, all the processors have the frequent sets and are

ready to proceed to the next pass.

The HD algorithm determines the con�guration of the

processor grid dynamically. In particular, the HD algo-

rithm partitions the candidate set into a big enough section

and assign a group of processors to each partition. Let m

be a user speci�ed threshold. If the total number of candi-

dates M is less than m, then the HD algorithm makes G

equal to 1, which means that the CD algorithm is run on

all the processors. Otherwise G is set to dM=me. Table II

shows how the HD algorithm chose the processor con�gu-

ration based on the number of candidates at each pass with

64 processors and m = 50K.

The HD algorithm inherits all the good features of the

IDD algorithm. It also provides good load balance and

enough computation work by maintaining minimum num-

ber of candidates per processor. At the same time, the
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Fig. 9. Hybrid Distribution (HD) Algorithm in 3� 4 Processor Mesh (G = 3; P = 12)
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TABLE II

Processor configuration and number of candidates of the HD algorithm with 64 processors and with m = 50K at each pass.

Note that 64� 1 configuration is the same as the IDD algorithm and 1� 64 is the same as the CD algorithm. The total

number of pass was 13 and all passes after 6 had 1� 64 configuration.

Pass 2 3 4 5 6 7

Con�guration 8� 8 64� 1 4� 16 2� 32 2� 32 1� 64

No of Cand. 351K 4348K 115K 76K 56K 34K

amount of data movement in this algorithm has been cut

down to 1=G of the IDD.

E. Other Parallel Algorithms

In addition to CD and DD, four parallel algorithms

(NPA, SPA, HPA and HPA-ELD) for mining association

rules were proposed in [11]. NPA is very similar to CD

and SPA is very similar to DD. HPA and HPA-ELD both

have some similarities with IDD, as all 3 algorithms es-

sentially eliminate the redundant computation inherent in

DD. However, the approach taken in HPA (and HPA-ELD)

is quite di�erent than that taken in IDD. In pass k of HPA,

for each transaction containing I items, C =

�

I

k

�

po-

tential candidates of size k are generated. Each of these

potential candidates is hashed to determine which proces-

sor might contain the candidate itemset matching these

potential candidate. These C potential candidates are sent

only to the corresponding processors. Then each processor

checks these potential candidates collected from all the pro-

cessors against the locally stored subset of candidate item-

sets. The distribution of the candidate itemsets over pro-

cessors is determined by the hash function. This may make

it di�cult to ensure that each processor receives equal num-

ber of candidates. Furthermore, the number of potential

candidates of size k generated for a transaction containing

I items is O(

�

I

k

�

). Hence, for values of k greater than

2, HPA can have much larger communication volume than

that for DD and IDD. For small values of k (e.g., k = 2), it

is possible for HPA to incur smaller communication over-

head than IDD.

Several researchers have proposed parallel formulations

of association rule algorithms [12], [13], [14]. Park, Chen,

and Yu proposed PDM [12], a parallel formulation of the se-

rial association rule algorithm DHP [15]. PDM is similar in

nature to the CD algorithm. In [14], Zaki et.al. presented

a parallelization of a serial algorithm originally introduced

in [16]. This serial algorithm is of entirely di�erent na-

ture than Apriori, hence its parallel formulations cannot

be compared to the algorithms discussed in this paper.

IV. Performance Analysis

In this section, we analyze the amount of work done by

each algorithm and the scalability of each algorithm. In

this analysis, a parallel algorithm is considered scalable

when the e�ciency can be maintained as the number of

processors is increased, provided that the problem size is

also increased [9]. Let T

serial

be the runtime of a serial

algorithm and T

p

be the runtime of a parallel algorithm.

E�ciency [9] (E) of a parallel algorithm is

E =

T

serial

P � T

p

A parallel algorithm is scalable if P � T

p

and T

serial

re-

main of the same order [9]. The problem size (i.e., the

serial runtime) for the Apriori algorithm increases either

by increasing N or by increasing M (as a result of lower-

ing the minimum support) in the algorithms discussed in

Section III. Table III describes the symbols used in this

section.

As discussed in Section II, each iteration of the algo-

rithm consists of two steps: (i) candidate generation and

hash tree construction (ii) computation of subset function

for each transaction. The derivation of the runtime of the

subset function is much more involved. Consider a transac-

tion that has I items. During the k

th

pass of the algorithm,

this transaction has C =

�

I

k

�

potential candidates that

need to be checked against the candidate hash tree. Note

that for a given transaction, if checking for one potential

candidate leads to a visit to a leaf node, then all the candi-

dates of this transaction are checked against the leaf node.

As a result, if this node is revisited due to a di�erent can-

didate from the same transaction, no checking needs to

be performed. Clearly the total cost of checking at the leaf

nodes is directly proportional to the number of distinct leaf

nodes visited with the transaction. We assume that the av-

erage number of candidate item-sets at the leaf nodes is S.

Hence the average number of leaf nodes in a hash tree is

L =M=S. In the implementation of the algorithm, the de-

sired value of S can be obtained by adjusting the branching

factor of the hash tree. In general, the cost of traversal for

each potential candidate will depend on the depth of the

leaf node in the hash tree reached by the traversal. To sim-

plify the analysis, we assume that the cost of each traversal

is the same. Hence, the total traversal cost is directly pro-

portional to C. For each potential candidate, we de�ne

t

travers

to be the cost associated with the traversal of the

hash tree and t

check

to be the cost associated with checking

the candidate item-sets of the reached leaf node.

Note that the number of distinct leaves checked by a

transaction is in general smaller than the number of po-

tential candidates C. This is because di�erent potential

candidates may lead to the same leaf node. In general, if C

is relatively large with respect to the number of leaf nodes
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TABLE III

Symbols used in the analysis.

symbol de�nition

N Total number of transactions

P Number of processors

M Total number of candidates

G Number of partitions of candidates in the HD algorithm

k Pass number in Apriori algorithm

I Average number of items in a transaction

C Average number of potential candidates in a transaction

S Average number of candidates at the leaf node

L Average number of leaves in the hash tree for the serial Apriori algorithm

t

travers

Cost of hash tree traversal per potential candidate

t

check

Cost of checking at the leaf with S candidates

V

i;j

Expected number of leaves visited with i potential candidates and j leaves

in the hash tree, then the number of distinct leaf nodes

visited will be smaller than C. We can compute the ex-

pected number of distinct leaf nodes visited as follows. To

simplify the analysis, we assume that each traversal of the

hash tree due to a di�erent potential candidate is equally

likely to lead to any leaf node of the hash tree.

Let P

v

be the probability of reaching a previously visisted

node and P

n

be the probability of reaching a new node.

Then, V

i;j

, the expected number of distinct leaf nodes vis-

ited when the transaction has i potential candidates, and

the hash tree has j leaf nodes is:

V

1;j

= 1

V

i;j

= V

i�1;j

� P

v

+ (V

i�1;j

+ 1)� P

n

= V

i�1;j

V

i�1;j

j

+ (V

i�1;j

+ 1)

j � V

i�1;j

j

= 1 +

j � 1

j

V

i�1;j

=

1�

�

j�1

j

�

i

1�

�

j�1

j

�

=

j

i

� (j � 1)

i

j

i�1

(1)

Note that for large j, V

i;j

' i. This can be shown by taking

limit on Equation 1:

lim

j!1

V

i;j

= lim

j!1

j

i

� (j � 1)

i

j

i�1

=

[i(i� 1) � � � 3 � 2] j � [i(i� 1) � � � 3 � 2] (j � 1)

(i� 1)(i� 2) � � � 2 � 1

= ij � i(j � 1)

= i (2)

This shows that if the hash tree size is much larger than the

number of potential candidates in a transaction, then each

potential candidate is likely to visit a distinct leaf node in

the hash tree.

Serial Apriori algorithm. Recall that in the serial Apriori

algorithm, the average number of leaf nodes in the hash

tree is L = M=S. Hence the number of distinct leaf vis-

ited per transaction is V

C;L

, and the computation time per

transaction for visiting the hash tree is:

T

trans

= C � t

travers

+ V

C;L

� t

check

So the run time of the serial algorithm for processing N

transactions is:

T

serial

comp

= N � T

trans

| {z }

subset function

+ O(M)

| {z }

hash tree construction

= N � C � t

travers

+N � V

C;L

� t

check

+O(M) (3)

The CD algorithm. In the CD algorithm the entire set of

candidates is replicated at each processor. Hence the av-

erage number of leaf nodes in the local hash tree at each

processor is L = M=S, which is the same as in the serial

Apriori algorithm. Thus the CD algorithm performs the

same computation per transactions as the serial algorithm,

but each processor handles only N=P number of transac-

tions. Hence the run time of the CD algorithm is:

T

CD

comp

=

N

P

� T

trans

| {z }

subset function

+

O(M)

| {z }

hash tree construction

+ O(M)

| {z }

global reduction

=

N

P

� C � t

travers

+

N

P

� V

C;L

� t

check

+

O(M) (4)

Comparing Equation 4 to Equation 3, we see that CD per-

forms no redundant computation. In particular, both the

time for traversal and for checking scales down by a factor

of P .

However, the cost of hash tree construction is the same as

the serial algorithm, and CD has additional cost of global
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reduction. Hence, P � T

CD

comp

will grow as O(PM) with

respect to O(M), whereas T

serial

comp

grows only as O(M).

This shows that CD does not scale with respect to the

increasingM . If M is too large to �t in the main memory,

then the set of transaction needs to be read from the disk

M

M

capacity

times, adding another O(

N

P

�

M

M

capacity

) term to

the runtime. On some architectures, this can be signi�cant.

But in our discussion in the rest of the paper, we will ignore

this term.

The DD algorithm. In the DD algorithm, the number of

candidates per processor is M=P , as the candidate set is

partitioned. Hence the average number of leaf nodes in

the local hash tree of each processor is L=P . Therefore,

the number of distinct leaf nodes visited per transaction is

V

C;

L

P

, and the computation time per transaction is:

T

DD

trans

= C � t

travers

+ V

C;

L

P

� t

check

The number of transactions processed by each processor is

N , as the transactions are shifted around the processors.

Hence, the computation per processor of the DD algorithm

is:

T

DD

comp

= N � T

DD

trans

+

O(

M

P

)

| {z }

hash tree construction

+ O(N)

| {z }

data movement

= N � C � t

travers

+N � V

C;

L

P

� t

check

+

O(

M

P

) +O(N) (5)

Comparing Equation 5 with the serial complexity (Equa-

tion 3), we see that the DD algorithm does not reduce

the computation associated with the hash tree traversal.

For both the serial Apriori and the DD algorithm, this

cost is N � C � t

travers

. However, the DD algorithm is

able to reduce the cost associated with the checking at

the leaf nodes. In particular, it reduces the serial cost of

N �V

C;L

� t

check

down to N �V

C;

L

P

� t

check

. However, be-

cause V

C;

L

P

> V

C;L

=P , the reduction achieved in this part

is less than a factor of P . We can easily see this if we con-

sider the case when L is very large. In this case, V

C;

L

P

' C

and V

C;L

=P ' C=P by Equation 2. Thus, the number of

leaf nodes checked over all the processors by the DD algo-

rithm is higher than that of the serial algorithm. This is

why the DD algorithm performs redundant computation.

Furthermore, DD has an extra cost of data movement.

Due to these two factors, DD does not scale with respect

to increasing N . However, the cost of building hash tree

scales down by a factor of P . Thus, DD is scalable with

respect to increasing M .

The IDD algorithm. In the IDD algorithm, just like the DD

algorithm, the average number of leaf nodes in the local

hash tree of each processor is L=P . However, the average

number of potential candidates that need to be checked

for each transaction at each processor is much less than

DD, because of the intelligent partitioning of candidates

set and the use of bitmap to prune at the root of the hash

tree. More precisely, the number of potential candidates

that need to be checked for a transaction is roughly C=P

assuming that we have a good balanced partition. So the

computation per transaction is:

T

IDD

trans

=

C

P

� t

travers

+ VC

P

;

L

P

� t

check

Thus the computation per processor is:

T

IDD

comp

= N � T

IDD

trans

+

O(

M

P

)

| {z }

hash tree construction

+ O(N)

| {z }

data movement

= N �

C

P

� t

travers

+N � VC

P

;

L

P

� t

check

+

O(

M

P

) +O(N) (6)

Comparing Equation 6 to Equation 3, we see that the IDD

algorithm is successful in reducing the cost associated with

the hash tree traversal linearly. It also reduces the checking

cost fromN�V

C;L

�t

check

down toN�VC

P

;

L

P

�t

check

. Note

that for su�ciently large L, V

C;L

' C and VC

P

;

L

P

' C=P .

This shows that IDD is also able to linearly reduce the

cost of checking at the leaf nodes, and thus unlike DD, it

performs no redundant work. The comparison of DD and

IDD in terms of the average number of distinct leaf node

visited per transaction is reported in our experiment (see

Figure 11 and discussions in Section V). However, P must

be relatively small for IDD to have a good load balance.

If P becomes large where M is �xed, the problem of load

imbalance discussed in Section III makes some processors

work on more than 1=P of items in a transaction at the

root of the hash tree.

If the parallel architecture has hardware support for com-

munication and computation to proceed concurrently and

the amount of computation in the subset function is signif-

icant, the data movement cost in IDD can be made to be

negligible. In the absence of such hardware support, the

cost of data movement in IDD is O(N). Thus IDD is not

scalable with respect to N , but scales better than DD, as

IDD does not have redundant computations. Like DD,

IDD is also scalable with respect to increasing M .

The HD algorithm. In the HD algorithm, the number of po-

tential candidates per transactions is C=G and the number

of candidates per processor is M=G. So the computation

time per transaction is:

T

HD

trans

=

C

G

� t

travers

+ VC

G

;

L

G

� t

check

The total number of transactions each processor has to

process is GN=P . Thus the computation per processor is:

T

HD

comp

=

G�N

P

� T

HD

trans

+ O(

M

G

)

| {z }

hash tree construction

+
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O(

G �N

P

)

| {z }

data movement

+ O(

M

G

)

| {z }

global reduction

=

G�N

P

�

C

G

� t

travers

+

G�N

P

� VC

G

;

L

G

� t

check

+

O(

M

G

) +O(

G�N

P

) (7)

Compared to the serial algorithm, Equation 7 shows that

the HD algorithm reduces the computation linearly with

respect to the hash tree traversal cost. The traversal cost is

reduced fromN�C�t

travers

down to N�C�

t

travers

P

. The

cost of checking at the leaf nodes is reduced fromN�V

C;L

�

t

check

down to ( G�N � VC

G

;

L

G

� t

check

)=P . Note that for

su�ciently large L, N�V

C;L

' NC andG�N�VC

G

;

L

G

=P '

N � C=P . Thus, the HD algorithm has a linear speedup

with respect to the cost of checking at the leaf nodes.

HD also has data movement cost. However, when P

is increased with increasing N , the cost is almost constant

provided G is unchanged. Thus HD is scalable with respect

to increasing N . Furthermore, HD scales with increasing

M provided G is chosen such that

M

G

is constant.

We make a comparison of HD and CD using Equations 4

and 7. Equation 4 can be roughly summarized as O(

N

P

) +

O(M), and Equation 7 can be similarly summarized as

O(G�

N

P

) +O(

M

G

). We show the condition where the run

time for HD is less than that of CD, i.e.,

O(G�

N

P

) +O(

M

G

) < O(

N

P

) +O(M)

Solving for G, which is the number of candidate partitions

in HDD, gives the following:

1 < G < O(

M � P

N

) (8)

Equation 8 shows that whenM is relatively larger than N ,

HD can outperform CD by selecting wide range of G val-

ues. This equation also shows that as N becomes relatively

larger than M, HD can reduce G to have a performance ad-

vantage over CD. WhenN is very large compared toM�P ,

HD can choose G to be 1 and becomes exactly same as CD.

V. Experimental Results

We implemented our parallel algorithms on a 128-

processor Cray T3E and SP2 parallel computers. Each

processor on the T3E is a 600 Mhz Dec Alpha (EV5),

and has 512 Mbytes of memory. The processors are in-

terconnected via a three dimensional torus network that

has a peak unidirectional bandwidth of 430 Mbytes/second,

and a small latency. For communication we used the mes-

sage passing interface (MPI). Our experiments have shown

that for 16 Kbyte messages we obtain a bandwidth of

303 Mbytes/second and an e�ective startup time of 16

microseconds. SP2 nodes consist of a Power2 processor

clocked 66.7 MHz with 128 Kbytes data cache, 32 Kbytes
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Fig. 10. Scaleup result on Cray T3E with 50K transactions and 0.1%

minimum support.

instruction cache, 256-bit memory bus, 256 Mbytes real

memory and 1 Gbytes virtual memory. The SP High Per-

formance Switch (HPS) has a theoretical maximum band-

width of 110 Mbytes/second.

We generated a synthetic dataset using a tool provided

by [17] and described in [2]. The parameters for the data

set chosen are average transaction length of 15 and aver-

age size of frequent item sets of 6. Data sets with 1000

transactions (63Kbytes) were generated for di�erent pro-

cessors. Due to the absence of a true parallel I/O system

on the T3E system, we kept a set of transactions in a main

memory bu�er and read the transactions from the bu�er

instead of the actual disks. For the experiments involv-

ing larger data sets, we read the same data set multiple

times. We also performed similar experiments on an IBM

SP2 in which the entire database resided on disks. Our ex-

periments (not reported here) show that the I/O require-

ments do not change the relative performance of the various

schemes. We do present the results of one experiment on

16-processor SP2 for comparing CD to IDD and HD when

CD scans database multiple times due to the partitioned

hash tree.

To compare the scalability of the four schemes (CD, DD,

IDD and HD), we performed scaleup tests with 50K trans-

actions per processor and minimum support of 0.1%. With

minimum support of 0.1%, the entire candidate hash tree

�t in the main memory of one T3E processor. For this ex-

periment, in the HD algorithm we have set the threshold

on the number of candidates for switching to the CD al-

gorithm to be 5K. With 0.1% support, the HD algorithm

switched to CD algorithm in pass 5 of total 12 passes, and

88.4% of the overall response time of the serial code was

spent in the �rst 4 passes. These scaleup results are shown

in Figure 10.

As noted in [6], the DD algorithm scales very poorly.

However, the performance achieved by IDD is much better

than that of the DD algorithm. In particular, on 32 proces-

sors, IDD is faster than DD by a factor of 5.6. It can be seen

that the performance gap between IDD and DD widens as

the number of processors increases. IDD performs better
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Fig. 11. Comparison of DD and IDD in terms of the average number

of distinct leaf node visited per transaction with 50K transactions

per processor and 0.2% minimum support.

than DD because of the better communication mechanism

for data movements and the intelligent partitioning of the

candidate set. To show the e�ects of these two improve-

ments, we replaced the communication mechanism of the

DD algorithm with that of the IDD. The scaleup result of

this improvement is shown as \DD+comm" in Figure 10.

Hence the response time reduction from DD to DD+comm

is due to the the better communication mechanism for data

movements, and the reduction from DD+comm to IDD

is due to the intelligent partitioning of the candidate set.

Same experiments of comparing DD, DD+comm, and IDD

on IBM SP2 also showed the similar pattern. We also show

the e�ect of IDD's intelligent partitioning over DD by ac-

tually counting the number of distinct leaf node visited by

both algorithms. We wan to verify that the average num-

ber of distinct leaf node visited by IDD is indeed much less

than DD. Figure 11 shows that VC

P

;

L

P

of IDD goes down by

factor of P , but V

C;

L

P

of DD does not go down by factor of

P .

Note that the response time of IDD increases as we in-

crease the number of processors. This is due to the load

balancing problem discussed in Section III, where the num-

ber of candidates per processor decreases as the number of

processors increases. Looking at the performance of the HD

algorithm, we see that the response time remains almost

constant as we increase the number of processors while

keeping the number of transactions per processor and the

minimum support �xed. Comparing against CD, we see

that HD actually performs better as the number of proces-

sors increases. Its performance on 128 processors is 16.5%

better than CD. This performance advantage of HD over

CD is due to the smaller cost of building candidate hash

tree and global reduction in HD.

In the previous experiment, we chose the minimum sup-

port high enough such that the entire candidate hash tree

�ts in main memory. When the candidate hash tree does

not �t in main memory, CD partitions it such that each

partition �ts in the main memory. Now the entire set of lo-

cal transactions have to be read at each processor as many
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Fig. 12. Response time on 16 processor IBM SP2 with 100K trans-

actions as the minimum support varies from 0.1% to 0.025%.

times as the number of partitions. This method increases

the I/O cost. On the system in which I/O is scalable and

fast (e.g., IBM SP2), this cost may be acceptable. We

implemented the CD algorithm to partition the hash tree

and read database multiple times in case the hash tree does

not �t into main memory. Figure 12 shows the performance

comparison of CD, IDD and HD on 16-processor IBM SP2

machine as the number of candidates increases by lower-

ing minimum support. Unlike the earlier experiments on

Cray T3E machine, the whole transactions were read in

from the �le. Figure 12 shows that as the number of candi-

dates increases both IDD and HD outperform CD. This is

due to the cost of building candidate hash tree, increased

I/O time required for multiple scan of the database and in-

creased communication time required for global reduction

operation of multiple partitions of the candidate frequen-

cies. Note that even on IBM SP2, the penalty due to these

overheads is about 8% for 1 million candidates, 11% for

3 million candidates and 25% for 11 million candidates.

For this particular experiments, the overhead of building

the hash tree was the dominant cost. However, on sys-

tems with slower I/O, the I/O penalty can be substantial

in addition to the overhead of building the hash tree.

In order to study the scalability of these algorithms, we

performed experiments on T3E with varying number of

processors (P ), candidates (M), and transactions (N). For

these experiments, we measured performance for comput-

ing size 3 frequent item sets only, as the computation for

size 3 item sets took more than 55% of the total run time.

Figure 13 shows the speedup of three algorithms as P is

increased from 4 to 64 with N = 1:3 million and M = 0:7

million. Note that the whole candidate hash tree �t in

main memory and thus CD algorithm read in transactions

only once. The �gure clearly shows that the HD algo-

rithm achieves better speedup than CD and IDD, and the

di�erence in performance increases for larger number of

processors. The reason for CD's poor speedup is the se-

rial bottleneck of hash tree construction and global reduc-

tion operation. For 4 processors, the time taken for hash

tree construction is only 3.1% of the total runtime and the
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Fig. 13. Speedup of three algorithms on Cray T3E as P is increased

from 4 to 64 with N = 1:3 million and M = 0:7 million. The

processor con�gurations for HD were 8�2 for 16 processors, 8�4

for 32 processors, and 8� 8 for 64 processors.

time for global reduction is only 1.6% of the total runtime.

However, for 64 processors, these overheads are 24.8% and

31.0%, respectively. On the other hand, IDD has poor

speedup due to the load imbalance, and data movement

cost. For this particular experiment, the dominant over-

head is load imbalance. In particular, for 4 processors the

load imbalance overhead is only 6.3%, whereas for 64 pro-

cessors this overhead is 49.6%. The cost of data movement

is 1.0% for 4 processors and 6.4% for 64 processors. The

processor con�guration chosen for HD was 8 � 8 for 64

processors. Hence, HD performed one eighth of CD's re-

duction operation and moved only one eighth of the data

among groups of 8 processors only.

In the next experiment, we �xed P and M , and varied

N from 1.3 million to 26.1 million. Figure 14 shows the

runtime of this experiment. The �gure shows that CD and

HD scale nicely with the increasing number of transactions.

However, with �xed M and P , IDD su�ers from the load

imbalance problem. In addition to that, the cost of data

movement adds up as N is increased. However, this data

movement cost is only 6.1% of the total runtime for 1.3

million candidate sets and 7.1% for 26.1 million candidate

sets. Hence, the majority of runtime di�erence between

IDD and the other two algorithms is due to the load im-

balance.

The �nal experiment compares the runtime of three al-

gorithms as M is increased from 0.7 million to 8.0 million

with �xed N and P . The main memory of T3E was large

enough to hold 0.7 million candidate sets. In CD, for the

candidate size of greater than 0.7 million, the candidate set

is partitioned and subset function was repeatedly called on

the partitioned candidate sets. Figure 15 shows the run-

time of this experiment. The �gure shows that the per-

formance gap between CD and HD widens as the number

of candidate sets increases. This is due to the fact that

CD has O(M) component in its runtime. HD scales with

respect to M as it has O(

M

G

) which is constant and O(

M

P

)

as M becomes much larger. For smaller size of M , IDD

performs worse than CD. AsM increases, the performance

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

R
es

po
ns

e 
tim

e 
(s

ec
.)

Number of transactions (in millions)

CD
IDD
HD

Fig. 14. Runtime of three algorithms on Cray T3E as N is increased

from 1.3 million to 26.1 million withM = 0:7 million and P = 64.
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Fig. 15. Runtime of three algorithms on Cray T3E asM is increased

from 0.7 million to 8.0 million with N = 1:3 million and P = 64.

The processor con�gurations for HD were as follow. 8 � 8 for

M = 0:7 million, 16� 4 for M = 1:7 million, 32� 2 for M = 2:3

million, and 64� 1 for M � 3:3 million.

of IDD improves and eventually outperforms CD. This is

due to the fact that IDD has O(

M

P

) component in its run-

time compared to O(M) of CD. Note that HD algorithm

behaves exactly the same as IDD for the candidate set size

of 3.3 million and more. This experiment shows that when

M is much larger than N , IDD and HD are much better

algorithms than CD.

For these experiments, just like the previous experiments

on T3E, we simulated I/O and assumed that I/O cost is

negligible compared to the computation cost. Even though

CD algorithms repeatedly read transactions, no actual I/O

was performed. However, when the I/O cost is factored in,

the performance of CD would be worse than reported in

these experiments.

VI. Conclusion

In this paper, we proposed two new parallel algorithms

for mining association rules. The IDD algorithm e�ectively

parallelizes the step of building hash tree, and is thus scal-

able with respect to the increasing candidate set size. This
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algorithm also utilizes total main memory available more

e�ectively than the CD algorithm. This is important if the

I/O cost becomes dominant due to slow I/O system. The

IDD algorithm improves over the DD algorithm which has

high communication overhead and redundant work. As

shown in Section IV, for each transaction, the DD algo-

rithm performs substantially more work overall than the

serial Apriori algorithm. The communication and idling

overheads were reduced using a better data movement com-

munication mechanism, and redundant work was reduced

by partitioning the candidate set intelligently and using bit

maps to prune away unnecessary computation. Another

useful feature of IDD is that it is well suited for the system

environment with single source of data base. For instance,

when all the data is coming from a database server or a

single �le system, one processor can read data from the

single source and pass the data along the communication

pipeline de�ned in the algorithm. However, as the number

of available processors increases, the e�ciency of this algo-

rithm decreases due to load imbalance. Furthermore, IDD

also su�ers from O(N) cost due to the communication of

transactions, and hence is unscalable with respect to the

number of transactions.

HD combines the advantages of CD and IDD. It is an

improvement over CD, as it partitions the hash tree and

thus avoids O(M) cost of hash tree construction and global

reduction. At the same time, it is an improvement over

IDD, as it does not move data among all the processors, but

only among a smaller subset of processors. Furthermore,

HD achieves better load balancing than IDD, because the

candidate set is partitioned into fewer buckets.

The experimental results on a 128-processor Cray T3E

parallel machine show that the HD algorithm scales just

as well as the CD algorithm with respect to the number

of transactions, and scales as well as IDD with respect

to increasing candidate set size. However, it outperforms

CD when the number of candidate itemsets is large, and

outperforms IDD when the number of transactions is very

large.

Acknowledgments

This work was supported by NSF grant ASC-9634719,

Army Research O�ce contract DA/DAAH04-95-1-0538,

Cray Research Inc. Fellowship, and IBM partnership

award, the content of which does not necessarily re
ect

the policy of the government, and no o�cial endorsement

should be inferred. Access to computing facilities was pro-

vided by AHPCRC, Minnesota Supercomputer Institute,

Cray Research Inc., and NSF grant CDA-9414015.

References

[1] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and

A. Reuter, \DBMS research at a crossroads: The vienna up-

date," in Proc. of the 19th VLDB Conference, Dublin, Ireland,

1993, pp. 688{692.

[2] R. Agrawal and R. Srikant, \Fast algorithms for mining associ-

ation rules," in Proc. of the 20th VLDB Conference, Santiago,

Chile, 1994, pp. 487{499.

[3] M. A. W. Houtsma and A. N. Swami, \Set-oriented mining for

association rules in relational databases," in Proc. of the 11th

Int'l Conf. on Data Eng., Taipei, Taiwan, 1995, pp. 25{33.

[4] A. Savasere, E. Omiecinski, and S. Navathe, \An e�cient algo-

rithm for mining association rules in large databases," in Proc.

of the 21st VLDB Conference, Zurich, Switzerland, 1995, pp.

432{443.

[5] R. Srikant and R. Agrawal, \Mining generalized association

rules," in Proc. of the 21st VLDB Conference, Zurich, Switzer-

land, 1995, pp. 407{419.

[6] R. Agrawal and J.C. Shafer, \Parallel mining of association

rules," IEEE Transactions on Knowledge and Data Eng., vol.

8, no. 6, pp. 962{969, December 1996.

[7] E.H. Han, G. Karypis, and V. Kumar, \Scalable parallel data

mining for association rules," in Proc. of 1997 ACM-SIGMOD

Int. Conf. on Management of Data, Tucson, Arizona, 1997.

[8] R. Agrawal, T. Imielinski, and A. Swami, \Mining association

rules between sets of items in large databases," in Proc. of 1993

ACM-SIGMOD Int. Conf. on Management of Data, Washing-

ton, D.C., 1993.

[9] Vipin Kumar, Ananth Grama, Anshul Gupta, and George

Karypis, Introduction to Parallel Computing: Algorithm Design

and Analysis, Benjamin Cummings/ Addison Wesley, Redwod

City, 1994.

[10] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-

tion: Algorithms and Complexity, Prentice-Hall, Englewood

Cli�s, NJ, 1982.

[11] Takahiko Shintani and Masaru Kitsuregawa, \Hash based par-

allel algorithms for mining association rules," in Proc. of the

Conference on Paralellel and Distributed Information Systems,

1996.

[12] J.S. Park, M.S. Chen, and P.S. Yu, \E�cient parallel data min-

ing for association rules," in Proceedings of the 4th Int'l Conf.

on Information and Knowledge Management, 1995.

[13] D. Cheung, V. Ng, A. Fu, and Y. Fu, \E�cient mining of asso-

ciation rules in distributed databases," IEEE Transactions on

Knowledge and Data Eng., vol. 8, no. 6, pp. 911{922, 1996.

[14] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, and Wei Li, \New parallel algorithms for fast discovery

of association rules," Data Mining and Knowledge Discovery:

An International Journal, vol. 1, no. 4, 1997.

[15] J.S. Park, M.S. Chen, and P.S. Yu, \An e�ective hash-based

algorithm for mining association rules," in Proc. of 1995 ACM-

SIGMOD Int. Conf. on Management of Data, 1995.

[16] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, and Wei Li, \New algorithms for fast discovery of

association rules," in Proc. of the Third Int'l Conference on

Knowledge Discovery and Data Mining, 1997.

[17] IBM Quest Data Mining Project,

\Quest synthetic data generation code,"

http://www.almaden.ibm.com/cs/quest/syndata.html, 1996.


