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Abstract

Clustering in data mining is a discovery process that graugst of data such that the intracluster similarity
is maximized and the intercluster similarity is minimizdgxisting clustering algorithms, such & means, PAM,
CLARANS, DBSCAN, CURE, and ROCK are designed to find clustieas fit some static models. These algorithms
can breakdown if the choice of parameters in the static miedetorrect with respect to the data set being clustered,
or if the model is not adequate to capture the charactesisticlusters. Furthermore, most of these algorithms
breakdown when the data consists of clusters that are afsgiwhapes, densities, and sizes. In this paper, we present
a novel hierarchical clustering algorithm calleéi&vELEON that measures the similarity of two clusters based on
a dynamic model. In the clustering process, two clustersv@med only if the inter-connectivity and closeness
(proximity) between two clusters are high relative to thieinal inter-connectivity of the clusters and closeness of
items within the clusters. The merging process using theudyo model presented in this paper facilitates discovery
of natural and homogeneous clusters. The methodology ardimmodeling of clusters used iNHBMELEON is
applicable to all types of data as long as a similarity mater be constructed. We demonstrate the effectiveness
of CHAMELEON in a number of data sets that contain points in 2D space, am@iooclusters of different shapes,
densities, sizes, noise, and artifacts. Experimentaltsesn these data sets show that ABMMELEON can discover
natural clusters that many existing state-of-the art ehirsg) algorithms fail to find.
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1 Introduction

Clustering in data mining [SAD93, CHY96] is a discovery process that groups a set of datathat the intracluster
similarity is maximized and the intercluster similarityngnimized [JD88, KR90, PAS96, CHY96]. These discovered
clusters can be used to explain the characteristics of tHeriying data distribution, and thus serve as the foundatio
for other data mining and analysis techniques. The appicsitof clustering include characterization of different
customer groups based upon purchasing patterns, catatjoninf documents on the World Wide Web [BG@0a,
BGG™99b], grouping of genes and proteins that have similar fonatity [HHS92, NRS 95, SCC 95, HKKM98],
grouping of spatial locations prone to earth quakes frosnseiogical data [BR98, XEKS98], etc.

Existing clustering algorithms, such Esmeans [JD88], PAM [KR90], CLARANS [NH94], DBSCAN [EKSX96]
CURE [GRS98], and ROCK [GRS99] are designed to find cluskatfit some static models. For examfe;means,
PAM, and CLARANS assume that clusters are hyper-ellipddqilaglobular) and are of similar sizes. DBSCAN
assumes that all points within genuine clusters are densitghable' and points across different clusters are not.
Agglomerative hierarchical clustering algorithms, sushGURE and ROCK use a static model to determine the
most similar cluster to merge in the hierarchical clus@ri@URE measures the similarity of two clusters based on
the similarity of the closest pair of the representativenobelonging to different clusters, without considerihg t
internal closeness (i.e., density or homogeneity) of the ¢lusters involved. ROCK measures the similarity of two
clusters by comparing the aggregate inter-connectivityofclusters against a user-specified static inter-coiigct
model, and thus ignores the potential variations in theiobmnectivity of different clusters within the same daga s
These algorithms can breakdown if the choice of parametéteistatic model is incorrect with respect to the data set
being clustered, or if the model is not adequate to capt@eliaracteristics of clusters. Furthermore, most of these
algorithms breakdown when the data consists of clustetatieaf diverse shapes, densities, and sizes.

In this paper, we present a novel hierarchical clusteriggrithm called GIAMELEON that measures the sim-
ilarity of two clusters based on a dynamic model. In the drtisy process, two clusters are merged only if the
inter-connectivity and closeness (proximity) between thigsters are comparable to the internal inter-connegtivit
of the clusters and closeness of items within the cluster® mierging process using the dynamic model presented
in this paper facilitates discovery of natural and homogeseclusters. The methodology of dynamic modeling of
clusters used in BAMELEON is applicable to all types of data as long as a similarity Raian be constructed. We
demonstrate the effectiveness ol AMELEON in a number of data sets that contain points in 2D space, amizhico
clusters of different shapes, densities, sizes, noiseagifdcts.

The rest of the paper is organized as follows. Section 2 gikes/erview of related clustering algorithms. Section 3
presents the limitations of the recently proposed statbeftt clustering algorithms. We present our new clustering
algorithm in Section 4. Section 5 gives the experimentalltes Section 6 contains conclusions and directions for
future work.

2 Related Work

In this section, we give a brief description of existing ¢&rsg algorithms.

1A point pis density reachable from a poiqt f they are connected by a chain of points such that eactt pagiminimal number of data points,
including the next point in the chain, within a fixed radiusfEx96].



2.1 Partitional Techniques

Partitional clustering attempts to break a data set into wéters such that the partition optimizes a given crite-
rion [JD88, KR90, NH94, CS96]. Centroid-based approachesypified by K means [JD88] and ISODATA [BH64],
try to assign points to clusters such that the mean squaendis of points to the centroid of the assigned cluster is
minimized. Centroid-based techniques are suitable onlyléda in metric spaces (e.g., Euclidean space) in which
it is possible to compute a centroid of a given set of pointedbld-based methods, as typified by PAM (Partition-
ing Around Medoids) [KR90] and CLARANS [NH94], work with sitarity data, i.e., data in an arbitrary similarity
space [GRG99]. These techniques try to find representative points ¢igs)l so as to minimize the sum of the
distances of points from their closest medoid.

A major drawback of both of these schemes is that they faitida in which points in a given cluster are closer
to the center of another cluster than to the center of thein olwster. This can happen in many natural clusters
[HKKM97, GRS99]; for example, if there is a large variatiam éluster sizes (as in Figure 1 (a)) or when cluster
shapes are convex (as in Figure 1 (b)).
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a) Clusters of widely differente sizes b) Clusters with convex shapes

Figure 1: Data sets on which centroid and medoid approaches fail.

2.2 Hierarchical Techniques

Hierarchical clustering algorithms produce a nested sscpief clusters, with a single all-inclusive cluster at the t
and single point clusters at the bottom. Agglomerativedrhical algorithms [JD88] start with all the data points
as a separate cluster. Each step of the algorithm involvegingetwo clusters that are the most similar. After each
merge, the total number of clusters decreases by one. Ttegsecan be repeated until the desired number of clusters
is obtained or the distance between two closest clustetsigesa certain threshold distance.

There are many different variations of agglomerative hihigal algorithms [JD88]. These algorithms primarily
differ in how they update the similarity between existingsters and the merged clusters. In some methods [JD88],
each cluster is represented by a centroid or medoid of the&poontained in the cluster, and the similarity between
two clusters is measured by the similarity between the o@fgfmedoids of the clusters. Like partitional techniques
such aK -means an& -medoids, these method also fail on clusters of arbitraaypsh and different sizes.

In the single link method [JD88], each cluster is represgtbieall the data points in the cluster. The similarity
between two clusters is measured by the similarity of theegdbpair of data points belonging to different clusters. Un
like the centroid/medoid based methods, this method carcfiraers of arbitrary shape and different sizes. However,
this method is highly susceptible to noise, outliers, anifeats.

CURE [GRS98] has been proposed to remedy the drawbacks bfdidhese methods while combining their
advantages. In CURE, instead of using a single centroidgesent a cluster, a constant number of representative



points are chosen to represent a cluster. The similaritydet two clusters is measured by the similarity of the closes
pair of the representative points belonging to differenstdrs. New representative points for the merged clusters a
determined by selecting a constant number of well scatigoads from all the data points and shrinking them towards
the centroid of the cluster according to a shrinking fadtbrlike centroid/medoid based methods, CURE is capable of
finding clusters of arbitrary shapes and sizes, as it reptesach cluster via multiple representative points. &

the representative points towards the centroid helps CURE0iding the problem of noise and outliers presentin the
single link method. The desirable value of the shrinkingdai CURE is dependent upon cluster shapes and sizes,
and amount of noise in the data.

In some agglomerative hierarchical algorithms, the sirityldbetween two clusters is captured by the aggregate
of the similarities (i.e., interconnectivity) among paifsitems belonging to different clusters. The rationaletfos
approach is that subclusters belonging to the same cludtdemd to have high interconnectivity. But the aggregate
inter-connectivity between two clusters depends on the sfzhe clusters involved, and in general pairs of larger
clusters will have higher inter-connectivity. Hence, mauogh schemes normalize the aggregate similarity between
a pair of clusters with respect to the expected inter-cativigcof the clusters involved. For example, the widely
used group-average method [JD88] assumes fully conneltistgirs, and thus scales the aggregate similarity between
two clusters byn x m, wheren andm are the size of the two clusters, respectively. ROCK [GRS89%cently
developed agglomerative algorithm that operates on aetbsimilarity graph, scales the aggregate inter-connigctiv
with respect to a user-specified inter-connectivity model.

Most of the algorithms discussed above work implicitly opkoitly with the n x n similarity matrix such thati, j)
element of the matrix represents the similarity betwié®and j " data items. Some algorithms derive a new similarity
matrix using the original matrix [JP73, GK78, JD88, GRS%8]d then apply one of the existing techniques on this
derived similarity matrix. In many cases, the new derivexlilsirity matrix is just a sparsified version of this original
similarity matrix from which certain entries (e.g., thoskasge value is below a threshold) have been deleted. In other
cases, the derived similarity matrix has entirely différeadues [JP73, GK78, GRS99]. The sparsified derived matrix
can help eliminate/reduce noise from the data, and sulgtgméduce the execution time of many algorithms. In some
cases, it can also provide a better model of similaritiesHerproblem domain. For example, mutual shared method
presented in [JP73] helps remove noise and outliers andoisrsio provide a better model to capture similarities
among transactions in [GRS99].

A sparse similarity matrix can be represented by a spargdhgaad tightly connected clusters of this graph can be
found by divisive hierarchical clustering algorithms sashthose based upon minimal spanning tree (MST) [JD88] or
graph-partitioning algorithms [KK98b, KK99a]. MST-baseldjorithms are highly susceptible to noise and artifacts
just like the single link method. Graph-partitioning basedthods are much more robust, but they tend to break
genuine clusters if there is a large variations in clustegsi

3 Limitations of Existing Hierarchical Schemes

A major limitation of existing agglomerative hierarchicathemes such as the Group Averaging Method [JD88],
ROCK [GRS99], and CURE [GRS98] is that the merging decisamesbased upon static modeling of the clusters to
be merged. In other words, these schemes fail to take infmuatspecial characteristics of individual clusters, and
thus can make incorrect merging decisions when the undgrtiata does not follow the assumed model, or when noise
is present. For example, consider the four sub-clustersioft®in 2D shown in Figure 2. The selection mechanism of
CURE (and of the single link method) will prefer merging ¢krs (a) and (b) over merging clusters (c) and (d), since



the minimum distances between the representative poirfts ahd (b) will be smaller than those for clusters (c) and
(d). But clusters (c) and (d) are better candidates for mgrgecause the minimum distances between the boundary
points of (c) and (d) are of the same order as the average afitiimmum distances of any points within these clusters
to other points. Hence, merging (c) and (d) will lead to a marmogeneous and natural cluster than merging (a) and

(b).

(@) (b) © (d)

Figure 2: Example of clusters for merging choices.

In agglomerative schemes based upon group averaging [H®Btelated schemes such as ROCK, connectivity
among pairs of clusters is scaled with respect to the exgectenectivity between these clusters. However, the key
limitation of all such schemes is that they assume a stagier, supplied inter-connectivity model, which is inflexible
and can easily lead to wrong merging decisions when the moutkdr- or over-estimates the inter-connectivity of the
data set or when different clusters exhibit different irdennectivity characteristics. Although some schemesall
the connectivity to be different for different problem dams(e.g, ROCK [GRS99])), it is still the same for all clusters
irrespective of their densities and shapes. Consider tbeptirs of clusters shown in Figure 3, where each cluster
is depicted by a sparse graph where nodes indicate data dtednsdges represent that their two vertices are similar.
The number of items in all four clusters is the same. Let ugrasghat in this example all edges have equal weight
(i.e., they represent equal similarity). Then both ROCK sedgctnechanism (irrespective of the assumed model of
connectivity) and the group averaging method will seledt pg),(d)} for merging, whereas the pajfa),(b) is a
better choice.
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Figure 3: Example of clusters for merging choices.

The selection mechanism in CURE (and related algorithmis ascsingle link method [JD88]) considers only the
minimum distance between the representative points of tugters, and does not consider the aggregate intercon-
nectivity among the two clusters. Similarly, the selectinachanism of algorithms such as ROCK only considers
the aggregate inter-connectivity across the pairs of efagtappropriately scaled by the expected value of the-inter
connectivity), but ignores the value of the strongest edgedges) across clusters. However, by looking at only one



of these two characteristics, these algorithm can eadiyes® merge the wrong pair of clusters. For instance, as the
example in Figure 4 illustrates, an algorithm that focusdg on the closeness of two clusters will incorrectly prefer
to merge clusters (c) and (d) over clusters (a) and (b). Sitgjlas the example in Figure 5 illustrates, an algorithm
that focuses only on the inter-connectivity of two clusteit incorrectly prefer to merge cluster (a) with cluste) (c
rather than with (b). (Here we assume that the aggregatecaonteectivity between items in clusters (a) and (c) is
greater than that between items in clusters (a) and (b). Mewthe border points of cluster (a) are much closer than
those of (b) than to those of (c).)

@) (b) © ©)

Figure 4: Example of clusters for merging choices.

(©)

Figure 5: Example of clusters for merging choices.

In summary, there are two major limitations of the agglortieeamechanisms used in existing schemes. First,
these schemes do not make use of information about the natumdividual clusters being merged. Second, one
set of schemes (CURE and related schemes) ignore the iniormabout the aggregate interconnectivity of items
in two clusters, whereas the other set of schemes (ROCK rthepgveraging method, and related schemes) ignore
information about the closeness of two clusters as defingddgimilarity of the closest items across two clusters.

In the following section, we present a novel scheme thatesddrs both of these limitations.

4 CHAMELEON: Clustering Using Dynamic Modeling

4.1 Overview

In this section we presentHAMELEON, a new clustering algorithm that overcomes the limitatiohgxisting ag-
glomerative hierarchical clustering algorithms discdsgeSection 3. Figure 6 provides an overview of the overall
approach used by AMELEON to find the clusters in a data set.

CHAMELEON operates on a sparse graph in which nodes represent dag #athweighted edges represent sim-
ilarities among the data items. This sparse graph reprasembf the data set allowsHAMELEON to scale to large
data sets and to operate successfully on data sets thatailaby only in similarity space [GR&9] and not in
metric spaces [GR&9]. CHAMELEON finds the clusters in the data set by using a two phase algurithuring the
first phase, @BAMELEON uses a graph partitioning algorithm to cluster the datastano a large number of relatively
small sub-clusters. During the second phase, it uses aworagghtive hierarchical clustering algorithm to find the
genuine clusters by repeatedly combining together thdselsisters.
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Figure 6: Overall framework CHAMELEON.

The key feature of BAMELEON's agglomerative hierarchical clustering algorithm isttihaetermines the pair of
most similar sub-clusters by taking into account both theriaonnectivity as well as the closeness of the clusters;
and thus it overcomes the limitations discussed in SectitraBresult from using only one of them. Furthermore,
CHAMELEON uses a novel approach to model the degree of inter-conitgaivd closeness between each pair of
clusters that takes into account the internal charadiesisf the clusters themselves. Thus, it does not depend on a
static user supplied model, and can automatically adapietaternal characteristics of the clusters being merged.

In the rest of this section we provide details on how to moldeldata set, how to dynamically model the similarity
between the clusters by computing theghative inter-connectivityandrelative closenesow graph partitioning is
used to obtain the initial fine-grain clustering solutionddow the relative inter-connectivity and relative closes
are used to repeatedly combine together the sub-clustarkigrarchical fashion.

4.2 Modeling the Data

Given a similarity matrix, many methods can be used to findaplgrepresentation [JP73, GK78, JD88, GRS99]. In
fact, modeling data items as a graph is very common in mamatakical clustering algorithms. For example, ag-
glomerative hierarchical clustering algorithms basedingls link, complete link, or group averaging method [JD88]
operate on a complete graph. ROCK [GRS99] first construgtgess graph from a given data similarity matrix using
a similarity threshold and the concept of shared neighlzord,then performs a hierarchical clustering algorithm on
the sparse graph. CURE [GRS98] also implicitly employs threcept of a graph. In CURE, when cluster representa-
tive points are determined, a graph containing only thegeesentative points is implicitly constructed. In thisgna
edges only connect representative points from differargtets. Then the closest edge in this graph is identified and
the clusters connected by this edge is merged.

CHAMELEON'’s sparse graph representation of the data items is basdteaommonly use#-nearest neighbor
graph approach. Each vertex of tkaearest neighbor graph represents a data item, and thiste &x edge between
two vertices, if data items corresponding to either of thde®is among thk-most similar data points of the data
point corresponding to the other node. Figure 7 illustréttesl-, 2-, and 3-nearest neighbor graphs of a simple data
set. Note that since KAMELEON operates on a sparse graph, each cluster is nothing more thain-graph of the
original sparse graph representation of the data set.

There are several advantages of representing data ukimgarest neighbor gragb. Firstly, data points that are
far apart are completely disconnected in tBg Secondly,Gk captures the concept of neighborhood dynamically.
The neighborhood radius of a data point is determined by #msity of the region in which this data point resides.
In a dense region, the neighborhood is defined narrowly aradsparse region, the neighborhood is defined more
widely. Compared to the model defined by DBSCAN [EKSX96] inietha global neighborhood density is specified,
Gk captures more natural neighborhood. Thirdly, the denditiyeregion is recorded as the weights of the edges. The
edge weights of dense regiongGp (with edge weights representing similarities) tend to lbgdand the edge weights
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(a) Original Data in 2D (b) 1-nearest neighbor graph  (c) 2-nearest neighbor graph (d) 3-nearest neighbor graph

Figure 7: k-nearest graphs from an original data in 2D.

of sparse regions tend to be small. As the consequence, auhbisection of the graph represents the interface layer
of sparse region of the graph. Finalfgy provides a computational advantage over a full graph in nzdggrithms
operating on graphs, including graph partitioning andipaning refinement algorithms.

4.3 Modeling the Cluster Similarity

To address the limitations of agglomerative schemes disclim Section 3, GAMELEON determines the similarity
between each pair of cluste& andC; by looking both at their relative inter-connectivigl (Ci, Cj) and their
relative closenesRC(Ci, Cj). CHAMELEON's hierarchical clustering algorithm selects to merge thie pf clusters
for which bothRI(C;j, Cj) andRC(C;j, Cj) are highji.e,, it selects to merge clusters that are well inter-conmkease
well as close together with respect to the internal interretivity and closeness of the clusters. By selectingetas
based on both of these criteriaH@VELEON overcomes the limitations of existing algorithms that ladther at the
absolute inter-connectivity or absolute closeness. Rtairte, in the examples shown in Figures 4 and 5 and discussed
in Section 3, GAMELEON will select to merge the correct pair of clusters.

In the remaining of this section we describe how the reldtiter-connectivity and relative closeness is computed
for a pair of clusters.

Relative Inter-Connectivity The relative inter-connectivity between a pair of clust€rsandC; is defined as
the absolute inter-connectivity betwe€nandCj normalized with respect to the internal inter-connegtioitthe two
clustersCj andC;. The absolute inter-connectivity between a pair of cliss@&randC; is defined to be as the sum
of the weight of the edges that connect vertice€iinto vertices inCj. This is essentially the edge-cut of the cluster
containing botlC; andC;j such that the cluster is broken in@ andCj. We denote this b)EC{ci,cj}. The internal
inter-connectivity of a clusteC; can be easily captured by the size of its min-cut biseEfGg,; (i.e., the weighted sum
of edges that partition the graph into two roughly equalg)afRecent advances in the graph-partitioning technology
has made it possible to find such bisector quite efficientl$Bb, KK99al].

Thus the relative inter-connectivity between a pair of ®usC; andC; is given by

[ECici.cj)l
ENREST @
2

RI(Gi,Cj) =
which normalizes the absolute inter-connectivity with dverage internal inter-connectivity of the two clusters.
By focusing on the relative inter-connectivity betweenstlus, GIAMELEON can overcome the limitations of
existing algorithms that use static inter-connectivitydals. For instance, in the example shown in Figure 3 that
was discussed in Section 3HEMELEON will correctly prefer to merge clusters (a) and (b) over tdus (c) and



(d), because the relative inter-connectivity betweentehss(a) and (b) is higher than the relative inter-connégtiv
between clusters (c) and (d), even though the later paiustets have a higher absolute inter-connectivity. Thus, th
relative inter-connectivity is able to take into accourftaiences in shapes of the clusters (as in Figure 3) as well as
differences in degree of connectivity of different cluster

Relative Closeness The relative closeness between a pair of clusigrandC;j is defined as the absolute close-
ness betwee@; andCj normalized with respect to the internal closeness of thectwstersC; andCj. The absolute
closeness between a pair of clusters can be captured in aemahbifferent ways. Many existing schemes, capture
this closeness by focusing on the pair of points betweemalpbints (or representative points [GRS98]) frémand
C; that are closest. A key drawback of these schemes is thatyiggenly on a single pair of points, they are less
tolerant to outliers and noise. For this reasoRARELEON measures the closeness of two clusters by computing the
average similarity between the pointsGnthat are connected to points@). Since these connections are determined
using thek-nearest neighbor graph, their average strength providesyagood measure of the affinity between the
data items along the interface layer of the two sub-clustand at the same time is tolerant to outliers and noise.
Note that this average similarity between the points froettio clusters is equal to the average weight of the edges
connecting vertices i@; to vertices inC;.

The internal closeness of each cluseran also be measured in a number of different ways. One pessiproach
is to look at all the edges connecting vertice€jr(i.e., edges that are internal to the cluster), and compute tamial
closeness of a cluster as the average weight of these edgescad argue that in a hierarchical clustering setting,
the edges used for agglomeration early on are stronger hloze used in later stages. Hence, average weights of the
edges on the internal bisection ©f andC; will tend to be smaller than the average weight of all the sdgehese
clusters. But the average weight of these edges is a bedieaior of the internal closeness of these clusters.

Hence in GIAMELEON, the relative closeness between a pair of clusBgrandCj is computed as,

EECC, Cj} (2)
|Ci| Cil &
\C.\+|cJ|SECc + \c.\+|cJ\SECc

RC(Ci, Cj) =

where§EcCi and§|5<;Cj are the average weights of the edges that belong in the mibisector of cluster€; andCj,
respectively, ancBchi <) is the average weight of the edges that connect vertic€s ia vertices inCj. Also note
that a weighted average of the internal closeness of ckSfeaindC;j is used to normalize the absolute closeness of
the two clusters, that favors the absolute closeness dkcltigat contains the larger number of vertices.

By focusing on the relative closeness between clusteryMELEON can overcome the limitations of existing
algorithms that look only at the absolute closeness. Feaite, in the example shown in Figure 2 that was discussed
in Section 3, GIAMELEON will correctly prefer to merge the clusters (c) and (d) over tlusters (a) and (b). This
is because, the relative closeness of clusters (c) and (uipker than the relative closeness between clusters (a)
and (b), even though the later pair of clusters have a higbsolate closeness. Thus, by looking at the relative
closeness, BAMELEON correctly prefers to merge clusters whose resulting ctestribits a uniformity in the degree
of closeness between the items in the cluster. Also notdhleatelative closeness between two clusters is in general
smaller than one, because the edges that connect vertideéfenent clusters have a smaller weight.



4.4 CHAMELEON: A Two-phase Clustering Algorithm

The dynamic framework for modeling the similarity betwedmsters discussed in Section 4.3 can be only applied
when each cluster contains a sufficiently large number dfoess {.e., data items). This is because in order to compute
the relative inter-connectivity and relative closenesglaofters, GIAMELEON needs to compute the internal inter-
connectivity and closeness of each cluster. Both of whictmoabe accurately calculated for clusters containing only
a few data points. For this reasonyl @MELEON uses an algorithm that consists of two distinct phases. Tingose

of the first phase is to cluster the data items into a large murabsub-clusters that contain a sufficient number of
items to allow dynamic modeling. The purpose of the secoras@his to discover the genuine clusters in the data
set by using the dynamic modeling framework to merge togetiese sub-clusters in a hierarchical fashion. In the
remainder of this section, we present the algorithms usetthése two phases of HAMELEON.

Phase I: Finding Initial Sub-clusters CHAMELEON finds the initial sub-clusters using a graph partitioning
algorithm to partition thd-nearest neighbor graph of the data set into a large numlpartfions such that thedge-
cut, i.e., the sum of the weight of the edges that straddle partitisnsinimized. Since each edge in tkenearest
neighbor graph represents the similarity among data poifsartitioning that minimizes the edge-cut effectively
minimizes the relationship (affinity) among data pointsoasrthe resulting partitions. The underlying assumption is
that links within clusters will be stronger and more plauitthan links across clusters. Hence, the data in eachipartit
are highly related to other data items in the same partition.

Recent research on graph partitioning has lead to the dawelot of fast and accurate algorithms that are based
on the multilevel paradigm [KK99a, KK99b]. Extensive exipgents on graphs arising in many application domains
have shown that multilevel graph partitioning algorithme gery effective in capturing thglobal structureof the
graph and are capable of computing partitionings that haxeryasmall edge-cut. Hence, when used to partition the
k-nearest neighbor graph, they are very effective in findirgrtatural separation boundaries of clusters. For example,
Figure 8 shows the two clusters produced by applying a reuétllgraph partitioning algorithm on tHenearest-
neighbor graphs for two spatial data sets. As we can see fimfigure, the partitioning algorithm is very effective in
finding the low-density separating region in the first exaanphd the small connecting region in the second example.

(@) (b)
Figure 8: An example of the bisections produced by multilevel graph partitioning algorithms on two spatial data sets. (a) The

partitioning algorithm cuts through the sparse region. (b) The partitioning algorithms cuts through a small connecting region.

CHAMELEON utilizes such multilevel graph partitioning algorithmsfiod the initial sub-clusters. In particular,
it uses the graph partitioning algorithm that is part of HIMETIS library [KK98a]. hMEIS has been shown [KK98c,
KK99b, Alp98] to quickly produce high-quality partitionys for a wide range of unstructured graphs and hypergraphs.



In CHAMELEON we primarily usenMETS to split a clusteC; into two sub-clusteré:iA andCiB such that the edge-cut
betweenC/ andCB is minimized and each one of these sub-clusters contaieast 25% of the nodes . Note
that this last requirement, often referred to aslihéance constraintis an integral part of using a graph partitioning
approach to find the sub-clustereBMETS is effective in operating within the allowed balance coaisits to find a
bisection that minimizes the edge-cut. However, this badatonstraint can ford@METS to break a natural cluster.
CHAMELEON obtains the initial set of sub-clusters as follows. It @iy starts with all the points belonging to the
same cluster. It then repeatedly selects the largest sisheclamong the current set of sub-clusters and bigiEES
to bisect. This process terminates when the larger sulbeclasntains fewer than a specified number of vertices, that
we will refer to it as MNSIzE. The MINSIZE parameter essentially controls the granularity of theéahdlustering
solution. In general, MiSIZE should be set to a value that is smaller than the size of masteoflusters that we
expect to find in the data set. At the same timeNBIzE should be sufficiently large such that most of the sub-ctaste
contain a sufficiently large number of nodes to allow us tdueta the inter-connectivity and closeness of the items in
each sub-cluster in a meaningful fashion. For most of the skgils that we encountered, setting\i8izE to about 1%
to 5% of the overall number of data points worked fairly well.

Phase II: Merging Sub-Clusters using a Dynamic Framework As soon as the fine-grain clustering solution
produced by the partitioning-based algorithm of the firsigehis found, BAMELEON then switches to an agglomer-
ative hierarchical clustering that combines togetherdtsesall sub-clusters. As discussed in Section 2, the key step
of agglomerative hierarchical algorithm is that of finditg tpair of sub-clusters that are tim@st similar

CHAMELEON’s agglomerative hierarchical clustering algorithm a8 the dynamic modeling framework dis-
cussed in Section 4.3 to select the most similar pairs otalsdy looking both at their relative inter-connectivity
and their relative closeness. There are many ways to deeel@gglomerative hierarchical clustering algorithm that
takes into account both of these measures. Two differertsel have been implemented iRAMELEON.

The first scheme merges only those pairs of clusters whastd/esinter-connectivity and relative closeness are both
above some user specified threshdid andTrc, respectively. In this approachHEMELEON visits each clustet;,
and checks to see if any one of its adjacent clusigrsatisfy the following two conditions:

RI(Ci, Cj) = Tri and RC(C;, Cj) > Trc. 3

If more than one of the adjacent clusters satisfy the aborditions, then GAMELEON selects to merg€; with the
cluster that it is most connected ic., it selects the clusteZ; such that the absolute inter-connectivity between these
two clusters is the highest. Once every cluster has been tiesopportunity to merge with one of its adjacent clusters,
the combinations that have been selected are performedharmahtire process is repeated. Note that this algorithm is
different than traditional hierarchical clustering aligloms, as it allows multiple pairs of clusters to be mergegbtber

at any given iteration. The parametdis; andTrc can be used to control the characteristics of the desirexierku

In particular, the parametélir| allows us to control the variability in the degree of int@maectivity of the items

in the cluster. The paramet&rc allows us to control the uniformity of the similarity amortgrns that belong to a
particular cluster. Depending on the choice of Titg and Trc parameters, GAMELEON’s merging algorithm may
reach a point from which it cannot proceed any further bezaase of the adjacent clusters satisfy the two conditions
of Equation 3. At this point we have the choice of either terating the algorithm and output the current clustering
as the solution or try to merge additional pairs of clustersiiccessively relaxing the two parameters, possibly at
different rates.
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The second scheme implemented iRAMELEON uses a function to combine the relative inter-connectiaitg
relative closeness, and then selects to merge the pair stectuthat maximizes this function. Since our goal is to
merge together pairs for which both the relative inter-amivity and the relative closeness are high, a natural Way o
defining such a function is to take their product. That isgsielhe pair of cluster€; andC; to merge that maximize
RI(Ci, Cj) = RC(Cj, Cj). This formula gives an equal importance to both of theserpaters. However, quite often
we may prefer clusters that give a higher preference to onthese two measures. For this reasoRA@ELEON
selects the pair of clusters that maximizes

RI(Ci, Cj) * RC(C;j, Cj)*, (4)

wherex is a user specified parameteralt> 1, then GIAMELEON gives a higher importance to the relative closeness,
and wherx < 1, it gives a higher importance on the relative inter-cotimig. In the experimental results presented
in Section 5 we used this second approach as it allows us iy gaserate the entire dendrogram for the hierarchical
clustering.

4.5 Performance Analysis

The overall computational complexity ofHAMELEON depends on the amount of time it requires to construct the
k-nearest neighbor graph and the amount of time it requirpsitiorm the two phases of the clustering algorithm.

The amount of time required to compute #raearest neighbor graph depends on the dimensionalityeafrtder-
lying data set. In particular, for low-dimensional datassetgorithms based dn— d trees [Sam90] can be used to
quickly compute thék nearest neighbors. It has been shown thanfdems, the average cost of inserting, as well
as the expectekl-nearest neighbor search timeGglogn) [FBF77], leading to an overall complexity @(nlogn).
However, for high dimensional data sets, schemes baséd-od trees are not applicable [BBKK97, BBK98]. For
such data sets, the amount of time required to finckthearest neighbors of a data itenOsn), leading to an overall
complexity ofO(n?).

The amount of time required by HAMELEON's two-phase clustering algorithm depends on the nunnbef
initial sub-clusters produced by the graph partitioningoaithm used in the first phase. To simplify the analysis,
we will assume that (i) each initial sub-cluster has the saonmaber of nodes/m, and (ii) during each successive
merging step, BAMELEON selects to merge only a single pair of clusters. Moreoveramalysis will be focused
on CHAMELEON's second scheme for combining the relative inter-conmiggtand relative closeness described in
Section 4.4. However, the overall complexity is similar fioe first scheme as well.

The amount of time required by the the Phase | efARELEON depends on the amount of time required by
hMETS. Given a graptG = (V, E), hMETS requiresO(|V| + |E|) [KK98c, KK99b] time to compute a bisection.
Since GHAMELEON operates on th&-nearest neighbor graphi| = O(|V|); thus, the computational complexity
of hMETS is O(]V|). CHAMELEON’s Phase | algorithm obtain® clusters by repeatedly partitioning successively
smaller graphs; hence, its overall computational comptégiO(n log(n/m)) which is bounded by (nlogn). Note
that one can potentially use a faster partitioning algarith obtain the initiam clusters in timeO (n+ mlogm) using
the multilevelm-way partitioning algorithm described in [KK99b].

The amount of time required by the second phase depends thre @nount of time needed to compute the internal
inter-connectivity and internal closeness for each ihdamwell as intermediate cluster, and (b) the amount of time
needed to select thmost similarpair of clusters to merge. Since the internal inter-conwmiézand internal closeness
for a particular cluster is computed by bisecting the cqoeslingk-nearest neighbor sub-graph of the cluster, its
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complexity is proportional to the number of items in eactstdu In particular, the amount of time required to bisect
each one of the initiam clusters isO(n/m), leading to an overall complexity dd(n). Next, during each of the
merging steps, BAMELEON needs to bisect the resulting cluster, and there are a tbtal © 1 such stepsi.g.,

until all the initial sub-clusters have been merged toggttiehe worst case complexity is obtained when the merging
algorithm repeatedly selects the same cluster and mergethianother;i.e., it grows a single large cluster. This
corresponds to the worst case because during each mergmghst algorithm needs to bisect a cluster that has the
largest possible number of data items. In this case, the atafuime required to bisect then — 1 intermediate
sub-clusters iiim:_zl(i x n/m)y which isO(nm).

The overall amount of time required to find th®st similarpair of clusters i0(m? logm) by using a heap-based
priority queue. In the worst case, the initial clusteringution can be such that each cluster is connected to all the
remaining clusters. In this case, it takégm?logm) time to insert the similarity of th&(m?) possible pairs of
sub-clusters into the priority queue. Now, during each nmergtep, the pair residing at the top of the priority queue
is selected, and the similarity of recently combined clusiethe remaining sub-clusters is updated. Each of these
update operations requir€¢mlogm) time, leading to an overall complexity @(m?2logm), as a total ofn— 1 such
updates needs to be performed (one for each pair of clubtargets merged).

Thus, the overall complexity of @AMELEON’s two-phase clustering algorithm @(nm+ nlogn + m?logm).

5 Experimental Results

In this section, we present experimental evaluation BRGELEON, and compare its performance with a publicly
available version of DBSCAN and a locally implemented vensif CURE. Even though KAMELEON is applicable

to any data set for which a similarity matrix is available @n be constructed), we chose to perform evaluation
for data sets containing points in two dimensional spacdviorreasons. First, similar data sets have been used to
evaluate the performance of other state-of-the art alyostsuch as DBSCAN and CURE. Second, clusters in 2D
data sets are easy to visualize, making the comparisonfefeiift schemes much easier. We do not report results of
ROCK [GRS99] (and other interconnectivity based aggloitinerachemes such as group averaging method [JD88]),
as they tend to perform worse than algorithms such as CUREairinspace data sets. Many of these results are
available at URL http://www.cs.umn.edutan/chameleon.html.

5.1 Data Sets

We experimented with five different data sets containingnfsoin two dimensions whose geometric shape are shown
in Figure 9. The first data set, DS1, has five clusters that fadéferent size, shape, and density, and contains noise
points as well as special artifacts. The second data set, &Bains two clusters that are close to each other and
different regions of the clusters have different densiti€be third data set, DS3, has six clusters of different size,
shape, and orientation, as well as random noise points a&uibdprtifacts such as streaks running across clustees. Th
fourth data set, DS4, has eight clusters of different shsige, and orientation, some of which are inside the space
enclosed by other clusters. Moreover, DS4 also contairsoramoise and special artifacts, such as a collection of
points forming vertical streaks. Finally, the fifth data, 885, has eight clusters of different shape, size, dersity,
orientation, as well as random noise. A particularly chadieg feature of this data set is that clusters are very d¢twse
each other and they have different densities. The size géthata sets ranges from 6,000 to 10,000 points, and their
exact size is indicated in Figure 9. Note that DS1 was obtHiren [GRS98], whereas we synthetically generated the
remaining data sets.
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DS4: 10000 points DS5: 8000 points

Figure 9: The five data sets used in our experiments.
5.2 Qualitative Comparison

CHAMELEON To cluster a data set usingtHBMELEON, we need to specify the following parameters: the value of
for computing thek-nearest neighbor graph, the value ofN\&izE for the Phase | of the algorithm, and the choice of
scheme for combining relative inter-connectivity andtietacloseness and associated parameters. In the expésimen
presented in this section, we used the same set of paranatdesyor all five data sets. In particular, we uked 10,
MINSIZE = 2.5% of the total items in the data set, and used the second scfeercombining Rl and RC, and used

o = 2.0 in Equation 4 for combining relative inter-connectivitydarelative closeness of each pair of clusters. We
also performed a parameter study to determine the sehstifCHAMELEON on the above set of parameters by using
k = {5, 10, 15, 20}, MINSIZE = {2%, 3%, 4%} anda = {1.5, 2.0, 2.5, 3.0}. Our results (not shown here) show that
CHAMELEON is not very sensitive on the above choice of parameters,tamaisi able to discover the correct clusters
for all of these combinations of values forMINSIZE, andw.

Figure 10 shows the clusters found byaAMELEON for each one of the five data sets. The points in the different
clusters are represented using a combination of differelors and different glyphs. As a result, points that belong
to the same cluster have both the same color as well as theits@re drawn using the same glyph. For example,
in the clustering solution shown for DS4, there are two @tssthat have cyan color (one contains the points in the
region between the two circles inside the ellipse, and theratontains the points that form a line between the two
horizontal bars and the 'c’ shaped cluster), and there apectusters that have a dark blue color (one corresponds
to the upside-down 'c’ shaped cluster and the other corredpto the circle inside the candy-cane); however, their
points are represented using different glyphs (bells andrss for the first pair, and squares and bells for the second
pair), so they denote different clusters.

Since GHAMELEON is hierarchical in nature, it creates a dendrogram of ptssilistering solutions at different
levels of granularity. The clustering solutions shown igu¥e 10 correspond to the earliest point in the agglomerativ
process in which BAMELEON was able to find the genuine clusters in the data set. Thdtdg,dorrespond to the
lowest level of the dendrogram at which the genuine clustetse data set have been identified and each one has been
placed together in one cluster. As a result, the number steta shown in Figure 10 for each one of the data sets can
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be larger than the number of genuine clusters, and thestaudiclusters contain points that are outliers.

Looking at Figure 10, we can see thad&@VELEON is able to correctly identify the genuine clusters in all five
data sets. In the case of DSIHAMELEON finds six clusters, five of which correspond to the genuinstels in the
data set, and the sixth one (shown with brown-colored "*'piig) corresponds to outlier points connecting the two
ellipsoid clusters. In the case of DS2H@MELEON finds two clusters, each one corresponding to a genuinesclunst
the data set. In the case of DS3HAMELEON finds eleven clusters, out of which six of them correspontégenuine
clusters in the data set, and the rest contain outliers.eiedlse of DS4, GAMELEON also finds eleven clusters, out of
which nine of them correspond to the genuine clusters, amdetst contain outlier points. Finally, in the case of DS5,
CHAMELEON finds eight clusters, each one corresponding to a genuisteclin the data set. As these experiment
illustrate CHAMELEON is very effective in finding clusters of arbitrary shape, sign and orientation, and is tolerant
to outlier points, as well as artifacts such as streaks nghacross clusters.

CURE We evaluated the performance oH@VELEON against CURE (described in Section 2) which has been
shown to be effective in finding clusters in two dimensior@hpdata sets [GRS98]. CURE was able to find the right
clusters for DS1 and DS2, but it failed to find the right clusten the remaining three data sets. Figure 11 shows the
results obtained by CURE for each one of the DS3, DS4, and Bfbsats. Since CURE is also hierarchical clustering
algorithm, it also produces a dendrogram of possible digaolutions at different levels of granularity. For eacte

of the data sets, Figure 11 shows two different clusteriigtiems containing different number of clusters. The first
clustering solution (first column of Figure 11) correspotaithe earliest point in the agglomerative process in which
CURE merges together sub-clusters that belong to two diftegenuine clusters. As we can see from Figure 11, in
the case of DS3, CURE selects the wrong pair of clusters tgerittogether when going from 18 down to 17 clusters,
resulting in the red-colored sub-cluster which containgipns of the twor-shaped clusters. Similarly, in the case
of DS4, CURE makes a mistake when going from 26 down to 25@lsisas it selects to merge together one of the
circles inside the ellipse with a portion of the ellipse. &y, in the case of DS5, CURE also makes a mistake when
going from 26 down to 25 clusters by merging together the kaaular cluster with a portion of the upside-down
'"Y’-shaped cluster. The second clustering solution cqroesls to solutions that contain as many clusters as those
discovered by BAMELEON. These solutions are considerably worse than the first setlofions (especially for DS4
and DS5), indicating that the merging scheme used by CURf&noes multiple mistakes.

For the results shown in Figure 11 experiments, the shrinfdntor is 03 and the number of representative points
is 10, which are the default values recommended in [GRS9&].alsb performed experiments with shrinking factor
varying from Q1 to 0.9 and the number of representative points varying from 10t These experiments showed
similar trends as shown in Figure 11. Furthermore, to fiatéi fair comparisons, we also removed the noise as
suggested in [GRS98], by identifying “slowly” growing ctess as noise point and removed them. For comparison
purposes we reassigned these noisy data points back to #éhelfisters using the assignment method discussed in
[GRS98],i.e., noise points are assigned to the cluster with the clospstsentative points. Note that these assignments
did not affect the overall clustering results.

DBSCAN DBSCAN [EKSX96] is a well-known spatial clustering algdmih that has been shown to find clusters
of arbitrary shapes. DBSCAN defines a cluster to be a maxinetrofsdensity-connected points. Every core point
in a cluster must have at least a minimum number of points P¥éinwithin a given radius (Eps). DBSCAN can find

arbitrary shape of clusters if the right density of the @usttan be determined in a priori and the density of clussers i
uniform.
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DBSCAN finds the right clusters on data sets DS3 and DS4 asdsriigis supplied the right combination of Eps
and MinPts. If MinPts is fixed to 4 (default value specified BKSX96]), then the algorithm works fine as long as
Eps is within the range (5.0,5.4) for DS3 and (5.7,6.1) fodDHowever, it fails to perform well on DS1, DS2, and
DS5, as these data sets contain clusters of different dessit

Figure 12 shows the clusters found by DBSCAN for DS1 and DSXffferent values of theEps parameter.
Following the recommendation of [EKSX96], thdinPtswas fixed to 4 andEpswas changed in these experiments.
The clusters produced for DS1 illustrate that DBSCAN camfigtctively find clusters of different density. In the first
clustering solution (Figure 12(a)), whé&ps = 0.5 DBSCAN puts the two ellipses into the same cluster, becthese
outlier points connecting satisfy the density requirers@astdictated by thepsandMinPtsparameters. These clusters
can be separated by decreasing the vallEpsfis was done in the clustering solution shown in Figure 12¢bjyhich
Eps=0.4 However, DBSCAN keeps the ellipses together, but now itftegmented the lower density cluster into a
large number of small sub-clusters. Our experiments hagrstitat DBSCAN exhibits similar characteristics on DS5.
The clusters produced for DS2 illustrate that DBSCAN caefffectively find clusters that their internal density vatie
The sequence of the three clustering solutions (Figure)2@}) for decreasing values of tegpsparameter illustrates
that as we decreadepsin hope of separating the two clusters, the natural clustetee data set are fragmented
into a large number of smaller clusters. On DS3 and DS4, DB$@ranaged to find the genuine clusters with right
parameter values. Figure 12 (f)—(h) shows the sensitifiRSCAN with respect to the Eps parameter.

6 Concluding Remarks

In this paper, we have presented a novel hierarchical clngtalgorithm called @AMELEON which takes into account
the dynamic model of clusters.HBMELEON can discover natural clusters of different shapes and,dimeEmuse its
merging decision dynamically adapts to the different @tisg model characterized by the clusters in consideration
Experimental results on several data sets with varyingadtaristics show that iTAMELEON can discover natural
clusters that many existing clustering algorithms fail twifi

All the data sets presented in the paper are in 2D spacey jpathuse similar data sets have been used most ex-
tensively by other authors [NH94, EKSX96, GRS98], and gdticause it is easy to evaluate the quality of clustering
on 2D data sets. Note that many of these schemes [EKSX96, §RE9 specifically suited for spatial data and/or
data in metric spaces. Hence, it is noteworthy that our sehamperforms them, even though it does not make use
of the metric-space/spatial nature of the data. The metbgg@f dynamic modeling of clusters in agglomerative
hierarchical methods is applicable to all types of data ag s a similarity matrix is available or can be constructed.

Even though we chose to model the data usingearest neighbor graph in this paper, it is entirely pdedib
use other graph representations suitable for particulplicgtion domains, e.g., such as those based upon mutual
shared neighbors [GK78, JD88, GRS99]. Furthermore, diffedomains may require different models for capturing
relative closeness and inter-connectivity of pairs of its In any of these situations, we believe that the two-
phase framework of EAMELEON would still be highly effective. Our future research inchsdthe verification of
CHAMELEON on different application domains and the study of effectess of different techniques for modeling
data as well as cluster similarity.

In this paper, we ignored the issue of scaling to large dasateat cannot fit in the main memory. These issues are
orthogonal to the ones discussed here and are covered iEZRFR98, GRS98, GR9].
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Figure 10: The clusters discovered by CHAMELEON for the five data sets.
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Figure 11: Clusters of CURE with shrinking factor 0.3 and number of representative points 10.
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(d) DS2: Eps=3.5, MinPts=4 (e) DS2: Eps=3.0, MinPts=4

(f) DS4: Eps=5.5, MinPts=4 (g) DS4: Eps=5.9, MinPts=4 (h) DS4: Eps=6.2, MinPts=4

Figure 12;: DBSCAN on the DS1, DS2, and DS4 data sets with different values of the Eps parameter.
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