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Abstract

Association mining may often derive an undesirably large
set of frequent itemsets and association rules. Recent
studies have proposed an interesting alternative: mining
frequent closed itemsets and their corresponding rules,
which has the same power as association mining but
substantially reduces the number of rules to be presented.

In this paper, we propose an e�cient algorithm,
CLOSET, for mining closed itemsets, with the develop-
ment of three techniques: (1) applying a compressed,
frequent pattern tree FP-tree structure for mining closed
itemsets without candidate generation, (2) developing
a single pre�x path compression technique to identify
frequent closed itemsets quickly, and (3) exploring a
partition-based projection mechanism for scalable mining
in large databases. Our performance study shows that
CLOSET is e�cient and scalable over large databases, and
is faster than the previously proposed methods.

1 Introduction

It has been well recognized that frequent pattern
mining plays an essential role in many important
data mining tasks, e.g. associations [2, 7], sequential
patterns [3], episodes [8], partial periodicity [5],
etc. However, it is also well known that frequent
pattern mining often generates a very large number
of frequent itemsets and rules, which reduces not only
e�ciency but also e�ectiveness of mining since users
have to sift through a large number of mined rules to
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�nd useful ones.

There is an interesting alternative, proposed re-
cently by Pasquier et al. [9]: instead of mining the

complete set of frequent itemsets and their associa-

tions, association mining only needs to �nd frequent

closed itemsets and their corresponding rules. An
important implication is that mining frequent closed
itemsets has the same power as mining the complete
set of frequent itemsets, but it will substantially re-
duce redundant rules to be generated and increase
both e�ciency and e�ectiveness of mining.

Let's examine a simple example. Suppose a
database contains only two transactions, \f(a1, a2,
. . . , a100), (a1; a2; : : : ; a50)g", the minimum sup-
port threshold is 1 (i.e., every occurrence is fre-
quent), and the minimum con�dence threshold is
50%. The traditional association mining method will
generate 2100 � 1 � 1030 frequent itemsets, which
are (a1), . . . , (a100), (a1; a2), . . . , (a99; a100), . . . ,
(a1; a2; : : : ; a100), and a tremendous number of asso-
ciation rules, whereas a frequent closed itemset min-
ing will generate only two frequent closed itemsets:
f(a1; a2; : : : ; a50), (a1; a2; : : : ; a100)g, and one asso-
ciation rule, \(a1; a2; : : : ; a50)) (a51; a52; : : : ; a100)",
since all the others can be derived from this one easily.

In this paper, we study e�cient mining of frequent
closed itemsets in large databases. Pasquier et
al. [9] propose an Apriori-based mining algorithm,
called A-close. Zaki and Hsiao [10] propose another
mining algorithm, CHARM, which improves mining
e�ciency by exploring an item-based data structure.
According to our analysis, A-close and CHARM are
still costly when mining long patterns or with low
minimum support thresholds in large databases. As
a continued study on frequent pattern miningwithout
candidate generation [6], we propose an e�cient
method for mining closed itemsets. Three techniques
are developed for this purpose: (1) the framework of
a recently developed e�cient frequent pattern mining
method, FP-growth [6], is extended, (2) strategies
are devised to reduce the search space dramatically
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and identify the frequent closed itemsets quickly,
and (3) a partition-based projection mechanism is
established to make the mining e�cient and scalable
for large databases. Our performance study shows
that CLOSET is e�cient and scalable over large
databases, and is faster than the previously proposed
methods.

The remaining of the paper is organized as fol-
lows. In Section 2, the problem of mining frequent
closed itemsets is de�ned and related concepts are
introduced. In Section 3, we introduce our method,
CLOSET, step-by-step. Section 4 reports the perfor-
mance comparison of our method with A-close and
CHARM as well as the scalability study. We summa-
rize our work and discuss some future research direc-
tions in Section 5.

2 Problem De�nition

Let I = fi1; i2; : : : ; ing be a set of items. An itemset
X is a non-empty subset of I. For brevity, itemset
X = fij1 ; ij2 ; : : : ; ijmg can also be denoted as X =
ij1ij2 � � � ijm . An itemset with m items is called an
m-itemset. Duple htid;Xi is called a transaction
if tid is a transaction identi�er andX is an itemset. A
transaction database TDB is a set of transactions.

An itemset X is contained in transaction htid; Y i
if X � Y . Given a transaction database TDB, the
support1 of an itemset X, denoted as sup(X), is the
number of transactions in TDB which contains X.
An association rule R : X ) Y is an implication
between two itemsets X and Y where X;Y � I and
X \ Y = ;. The support of the rule, denoted
as sup(X ) Y ), is de�ned as sup(X [ Y ). The
con�dence of the rule, denoted as conf(X ) Y ),

is de�ned as sup(X[Y )
sup(X) .

As discussed by many studies, given a trans-
action database TDB, a minimal support thresh-
old min sup, and a minimal con�dence threshold
min conf , the problem of association rule min-
ing is to �nd the complete set of association rules in
the database with support and con�dence passing the
thresholds, respectively. Also, as it has been shown
in [2], the problem of mining association rules can be
divided into two sub-problems:

1. Find all frequent itemsets in the transaction
database with respect to the given support thresh-
old. An itemset is called a frequent itemset if
its support is no less than min sup.

1For convenience of discussion, support is de�ned here as
absolute occurrence frequency. Notice it is de�ned in some
literature as the relative one, i.e., the occurrence frequency vs.
the total number of transactions in the transaction database.

2. For each frequent itemset Y found, generate all
association rules X ) Y �X where X � Y , if its
con�dence is no less than min conf .

The requirement of mining the complete set of
association rules leads to two problems: (1) there
may exist a large number of frequent itemsets in a
transaction database, especially when the support
threshold is low, and (2) there may exist a huge
number of association rules. It is hard for users to
comprehend and manipulate a huge number of rules.

An interesting alternative to this problem is the
mining of frequent closed itemsets and their corre-
sponding association rules, proposed in [9].

De�nition 1 (Frequent closed itemset)An item-
set X is a closed itemset if there exists no itemset
X0 such that (1) X 0 is a proper superset of X, and
(2) every transaction containing X also contains X0.
A closed itemset X is frequent if its support passes
the given support threshold. 2

Thus, instead of mining association rules on all the
itemsets, one can mine association rules on frequent
closed itemsets only.

De�nition 2 (Association rule on frequent closed
itemsets) Rule X ) Y is an association rule on
frequent closed itemsets if (1) both X and X [Y
are frequent closed itemsets, (2) there does not exist
frequent closed itemset Z such thatX � Z � (X[Y ),
and (3) the con�dence of the rule passes the given
con�dent threshold2. 2

Similar to mining association rules, the complete
set of association rules on frequent closed itemsets
can be mined in a two-step process: (1) mining the
set of frequent closed itemsets with min sup, and (2)
generating the complete set of association rules on
the frequent closed itemsets with min conf .

Example 1 (Association rule mining) A trans-
action database TDB is given in Table 1. h40; fa; c; d; fgi
is a transaction, in which 40 is the transaction identi-

�er, and fa; c; d; fg is an itemset. Itemset fa; c; d; fg
can also be denoted as acdf .

Given min sup = 2 and min conf = 50%,
association rules can be mined in a two-step process:

� Find frequent itemsets in the transaction database.
This can be done by Apriori as shown in most

2The second requirement is based on the rationale that if
there are rulesX ) Y and (X[Y )) Z, the ruleX ) (Y [Z)
is redundant, since sup(X ) (Y [Z)) yields to sup(X[Y )) Z

and conf(X ) (Y [Z)) = conf(X ) Y )�conf((X[Y )) Z).

2



Transaction ID Items in transaction

10 a; c; d; e; f

20 a; b; e

30 c; e; f

40 a; c;d; f

50 c; e; f

Table 1: The transaction database TDB.

association mining studies. There are in total 20
frequent itemsets in TDB, out of which only six
are closed: acdf , cef , ae, cf , a and e. Neither ac
nor d is closed since every transaction containing
them also contains f .

� Generate all association rules on each frequent

itemset. For example, for frequent itemset acdf ,
cf is a subset with support 4, so the con�dence of

rule R : cf ) ad is sup(acdf)
sup(cf) = 2

4 � 50%. Thus,

R is an association rule. It can be veri�ed that
for frequent itemset acdf , in total 14 association
rules can be generated: every implication from
X � fa; c; d; fg (X 6= ;) to fa; c; d; fg � X is an
association rule.

Notice that all the association rules generated
from acdf , except for cf ) ad and a) cdf , are
with con�dence 100%. For example, c) adf with
con�dence 100% since items c and f always happen
together. That is, only the association rules on
frequent closed itemsets look interesting. Moreover,
to compute con�dence of such interesting association
rules, only the supports of frequent closed itemsets
are needed. For example, to derive cf ) ad and
a) cdf , we only need to know the support of acdf ,
cf and a.

Let's derive all the association rules on frequent
closed itemsets. Each rule is presented in the form of
X ) Y (support; confidence), where X and Y are
itemsets. Frequent closed itemset acdf has only two
subsets, cf and a, as frequent closed itemsets. Thus,
it generates two association rules: cf ) ad (2, 50%)
and a) cdf (2, 67%). The other four are e) cf (3,
75%), cf ) e (3, 75%), e) a (2, 50%) and a) e (2,
67%). 2

We refer readers to [9] for the theoretical founda-
tion of association rules on frequent closed itemsets.
In this paper, we focus on how to �nd the complete
set of frequent closed itemsets e�ciently from large
database, which is called the frequent closed item-
set mining problem.

Before introducing our method on mining frequent
closed itemsets, we present one property of closed
itemsets, which follows the de�nition of closed item-
sets.

a-cond DB (a:3)
cef
e
cf

ea-cond DB (ea:2)
c

output F.C.I.: ea:2

f-cond DB (f:4)
ce:3
c

e-cond DB (e:4)
c:3

TDB
cefad
ea
cef
cfad
cef

d-cond DB (d:2)
cefa
cfa

F.C.I for frequent closed itemset

output F.C.I.: cfad:2
output F.C.I.: a:3

output F.C.I.: cf:4, cef:3
output F.C.I.: e:4

f_list: <c:4, e:4, f:4, a:3, d:2>

Figure 1: Mining frequent closed itemsets (abbrevi-
ated as F.C.I.) using CLOSET.

Lemma 2.1 Let X and Y be two itemsets, and

sup(X) = sup(Y ). Y is not a closed itemset if

Y � X. 2

3 E�ciently Mining Frequent
Closed Itemsets

In this section, we study e�cient mining of frequent
closed itemsets. In Section 3.1, we �rst illustrate the
mining process of CLOSET with an example. Then,
we presents the CLOSET algorithm in Section 3.2.
Enhancement of the scalability of the method is
discussed in Section 3.3.

3.1 Mining frequent closed itemsets with
projected database: An example

Let's examine how to mine frequent closed itemsets
using the following example.

Example 2 (CLOSET) For the same transaction
database TDB in Table 1 with min sup = 2, we
introduce a divide-and-conquer method for mining
frequent closed itemset. The method explores the
concepts of projected database [1, 6], as shown in
Figure 1.

1. Find frequent items. Scan TDB to �nd the set
of frequent items and derive a (global) frequent

item list, called f list, and f list = hc : 4; e :
4; f : 4; a : 3; d : 2i, where the items are sorted
in support descending order, and the number
after \:" indicates the support of the item. For
easier understanding, the frequent items in each
transaction are listed in Figure 1 according to the
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order of f list and any infrequent item, such as b,
is omitted. For example, abe is listed as ea.

2. Divide search space. All the frequent closed
itemsets can be divided into 5 non-overlap subsets
based on the f list: (1) the ones containing item
d, (2) the ones containing item a but no d, (3) the
ones containing item f but no a nor d, (4) the ones
containing e but no f , a nor d, and (5) the one
containing only c. Once all subsets are found, the
complete set of frequent closed itemsets is done.

3. Find subsets of frequent closed itemsets. The sub-
sets of frequent closed itemsets can be mined by
constructing corresponding conditional databases

and mine each recursively.

(a) Find frequent closed itemsets containing d. Only
transactions containing d are needed. The d-

conditional database, denoted as TDBjd, con-
tains all the transactions having d, which is
fcefa, cfag. Notice that item d is omitted in
each transaction since it appears in every trans-
action in the d-conditional database.

The support of d is 2. Items c, f , and a

appear twice respectively in TDBjd. That is,
every transaction containing d also contains
c, f , and a. Moreover, e is infrequent since
it appears only once in TDBjd. Therefore,
cfad : 2 is a frequent closed itemset. Since this
itemset covers every frequent item in TDBjd,
the mining of TDBjd �nishes.

(b) Find frequent closed itemsets containing a but
no d. Similarly, the a-conditional database,
TDBja = fcef; e; cfg. Item d in such transac-
tions are omitted, since all frequent closed item-
sets containing d have been found in TDBjd.

Since sup(a) = 3 and there is no any item ap-
pearing in every transactions in the a-conditional
database, a : 3 is a frequent closed itemset.

To �nd the remaining frequent closed itemsets
containing a but no d, we need to further
project the a-conditional database. First,
the set of frequent items in the a-conditional
database forms a local frequent item list, f lista
= hc : 2; e : 2; f : 2i3. Local infrequent item is
ignored even if it is in global f list.

According to f lista, the frequent closed itemsets
containing a but no d can be further partitioned
into three subsets: (1) the ones containing af

but no d, (2) the ones containing ae but not
d or f , and (3) the ones containing ac but no

3In this example, it happens f lista is a pre�x of (global)
f list, with di�erent counts. In general, the local frequent items
can be re-arranged according to the local support counts.

d, e or f . They can be mined by constructing
conditional databases recursively.

The support of fa equals to that of cfad,
which is a super set of fa and also a frequent
closed itemset already found. That means every
transaction containing fa must also contain
cfad. Therefore, there is no frequent closed
itemset containing fa but no d. Similarly, there
is no frequent closed itemset containing ca but
not d, e or f , since ca is a subset of cfad and
sup(ca) = sup(cfad).

The ea-conditional database, TDBjea = fcg,
cannot generate any frequent items. Thus,
ea : 2 should be a frequent closed itemset.

(c) Find frequent closed itemsets containing f but no
a nor d. The f-conditional database, TDBjf =
fce : 3; cg, where ce : 3 indicates that ce

happens three times. Since c happens in every
transaction in the f-conditional database, and
cf is not a subset of any frequent closed itemset
with the same support, cf : 4 is a frequent
closed itemset. Since the support of fc also
equals to those of f and c, f and c always
happen together, so there is no frequent closed
itemsets containing c but no f . Also, that
cef : 3 is not a subset of any itemset found,
so it is a frequent closed itemset.

(d) Find frequent closed itemsets containing e but no
f , a nor d. Similarly, the e-conditional database,
TDBje = fc : 3g. But ce is not a closed
itemset since it is a proper subset of cef and
sup(ce) = sup(cef). However, e : 4 is a frequent
closed itemsets.

(e) Find frequent closed itemsets containing only c.
In Step 3c, we know that there is no frequent
closed itemsets containing c but no f , so there
is no frequent closed itemsets containing only c.

4. In summary, the set of frequent closed itemsets
found is facdf : 2, a : 3, ae : 2, cf : 4, cef : 3,
e : 4g. 2

3.2 CLOSET: Algorithm and Soundness

Now, let us justify the correctness and completeness
of the mining process in Example 2.

De�nition 3 (Frequent item list, f list) Given a
transaction database TDB and a support threshold
min sup, the list of all frequent items in support
descending order is called the frequent item list,
or f list in short. 2

Lemma 3.1 Given a transaction database TDB, a

support threshold min sup, and f list = hi1; i2; : : : ; ini,
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the problem of mining the complete set of frequent

closed itemsets can be divided into n sub-problems:

The jth problem (1 � j � n) is to �nd the complete

set of frequent closed itemsets containing in+1�j but

no ik (for n+ 1� j < k � n). 2

The problem partitioning can be performed recur-
sively. That is, each subset of frequent closed itemsets
can be further divided when necessary. This forms a
divide-and-conquer framework. To mine the subsets
of frequent closed itemsets, we construct correspond-
ing conditional databases.

De�nition 4 (Conditional database) Given a
transaction database TDB. Let i be a frequent item
in TDB. The i-conditional database, denoted
as TDBji, is the subset of transactions in TDB

containing i, and all the occurrences of infrequent
items, item i, and items following i in the f list are
omitted.

Let j be a frequent item in X-conditional database
TDBjX , where X is a frequent itemset. The jX-
conditional database, denoted as TDBjjX , is the
subset of transactions in TDBjX containing j and all
the occurrences of local infrequent items, item j, and
items following j in local f listX are omitted. 2

To �nd the frequent closed itemsets containing i

but no other items following i in f list, we construct
the i-conditional database. Then the subproblem
can be divided further if necessary. For instance,
in Example 2, we further construct the fa- and
ea-conditional databases based on the a-conditional
database.

How can we identify the frequent closed itemsets
from conditional databases? The following lemma
provides the theoretical foundation that CLOSET can
�nd frequent closed itemsets correctly.

Lemma 3.2 If X is a frequent closed itemset, then

there is no item appearing in every transaction in the

X-conditional database.

Proof. If there exists an item i appearing in every
transaction in the X-conditional database, we have
sup(iX) = sup(X). Following Lemma 2.1, X cannot
be a closed itemset. Thus, we have the lemma. 2

Lemma 3.3 If an itemset Y is the maximal set

of items appearing in every transaction in the X-

conditional database, and X [ Y is not subsumed

by some already found frequent closed itemset with

identical support, then X [ Y is a frequent closed

itemset.

Proof. If an itemset Y is the maximal set of items
appearing in every transaction in the X-conditional

database, X [ Y is potentially a frequent closed
itemset. The crucial point becomes whether later
generated frequent closed itemset may subsume it.
Suppose there exists a frequent closed itemset X [
Y [ Z which subsumes X [ Y , i.e., being frequent
and having identical support k. Z will occur together
with X at least k times and should be either in X's
conditional database or earlier, based on the rules of
construction conditional databases. Thus it cannot
appear later. Thus, we have the lemma. 2

The search for closed itemsets can be improved
further by a few optimization techniques as shown
below.

Optimization 1 : Compress transactional and
conditional databases using an FP-tree structure.

An FP-tree [6] is a pre�x tree structure, represent-
ing compressed but complete frequent itemset in-
formation for a database. Its construction is sim-
ple. The transactions with the same pre�x share
the portion of a path from the root. Similarly, con-
ditional FP-trees can be constructed for conditional
databases. We refer readers to [6] for details about
the FP-tree and the related techniques. There are
the following bene�ts for using FP-tree in the closed
itemsets computation.

� FP-tree compresses databases for frequent itmset
mining. Transactions sharing common pre�x
paths of a branch of the tree will not create any
new nodes in an FP-tree. Moreover, the deeper
the recursion in the construction of conditional
databases, the better chance of sharing, and the
more compact the conditional FP-tree.

� Conditional databases can be derived from FP-tree
e�ciently. This is shown in [6]. Since FP-tree may
compress multiple transactions into one path, the
projection of this path is equivalent to the scan of
multiple transactions.

Optimization 2 : Extract items appearing in
every transaction of conditional database.

If there exists a set of items Y appearing in every
transaction of the X-conditional database, X [ Y

forms a frequent closed itemset if it is not a proper
subset of some frequent closed itemset with the same
support. For instance, in Example 2, since c, f , and
a appear in every transaction in the d-conditional
database, cfad should be a frequent closed itemset.
Note since such items can be easily identi�ed at
the item counting phase, such an optimization takes
e�ect even before constructing the FP-tree for the
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root

i_k1:n_1

i_{k1+1}:n_2

i_k2:n_2

i_kl:n_l

. . .  . . .

frequent closed itemset
i_1 ... i_k1:n_1

frequent closed itemset
i_1 ... i_k2:n_2

frequent closed itemset
i_1 ... i_kl:n_l

Figure 2: Directly extract frequent closed itemsets
from FP-tree.

conditional database. The items extracted should
be excluded from the local frequent item list and
the conditional database. The soundness of the
optimization follows Lemma 3.3.

Optimization 2 takes e�ect when forming the con-
ditional database. It has the following bene�ts: (1)
it reduces the size of FP-tree because the conditional
database contains less number of items after such ex-
traction, and (2) it may reduce the level of recursions
since it combines a few items into one.

Optimization 3 : Directly extract frequent
closed itemsets from FP-tree.

If there exists a single pre�x path in an FP-tree,
some frequent closed itemsets can be extracted di-
rectly from the conditional database. For example,
the f-conditional database in Example 2 has trans-
actions ce : 3 and c : 1. Its corresponding FP-tree has
only one branch: hc : 4; e : 3i. In this case, one can
directly enumerate itemsets cf : 4 and cef : 3. Let
us examine this in more detail.

De�nition 5 Let i be a frequent item in the X-
conditional database. If there is only one node N

labeled i in the corresponding FP-tree, every ancestor
of N has only one child, and N has (1) no child, (2)
more than one child, or (3) one child with count value
smaller than that of N , then the i-single segment
itemset is the union of itemsetX and the set of items
including N and N 's ancestors (excluding the root).

2

Lemma 3.4 The i-single segment itemset Y is a

frequent closed itemset if the support of i within the

conditional database passes the given threshold and Y

is not a proper subset of any frequent closed itemset

already found.

Proof. In FP-tree, the count of N 's every ancestor
is no less than that of N . Since the support of i
within the conditional database passes the support
threshold, Y is a frequent itemset. Now we show Y is
closed. Suppose there is an item j appearing in every
transaction containing Y but j 62 Y . The support of j
in the conditional database must be equal to that of i.
Since j 62 Y , j must follow i in the local frequent item
list and all item between i and j (including i and j)
have the same support, i.e., they also appear in every
transaction in the conditional database. According
to the construction of FP-tree, i should have only one
son node, which is labeled by the item following i

in the local frequent item list, and the count of that
node is exactly the same as that of i. That leads to a
con
ict with Y is the i-single segment itemset. Thus,
we have the lemma. 2

Optimization 3 shares similar bene�ts as Optimiza-
tion 2. It allows the program to identify frequent
closed itemsets quickly, reduces the size of the remain-
ing FP-tree to be examined, and reduces the level of
recursions since it combines multiple items into one.

Optimization 4 : Prune search branches.

Let X and Y be two frequent itemsets with the
same support. If X � Y , and Y is a closed
itemset, then there is no need to search the X-
conditional database because there is no hope to
generate frequent closed itemset from there. For
example, in Example 2, we do not need to search the
c-conditional database, since c is a subset of fc, which
is a frequent closed itemset with the same support.
The soundness of the optimization is veri�ed in the
following lemma.

Lemma 3.5 Let X and Y be two frequent itemsets

with the same support. If X � Y , and Y is closed,

then there exists no frequent closed itemset containing

X but not Y �X.

Proof. Let Z be a frequent closed itemset containing
X. Suppose Z does not contain some item i 2 Y �X.
Since X � Y , according to the A-priori heuristic,
sup(X) � (Y ). sup(X) = sup(Y ) holds only if
for every transaction containing X, it also contains
Y �X. So item i must appear in every transaction
containing Z, since X � Z. That means Z is not
closed. So we have the lemma. 2
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Based on the above reasoning and analysis, we have
the algorithm of CLOSET as follows.

Algorithm 1 (CLOSET): Mining frequent closed
itemsets by the FP-treemethod.

Input: Transaction database TDB and support thresh-
old min sup;

Output: The complete set of frequent closed item-
sets;

Method:

1. Initialization. Let FCI be the set of frequent
closed itemset. Initialize FCI  � ;;

2. Find frequent items. Scan transaction database
TDB, compute frequent item list f list;

3. Mine frequent closed itemsets recursively. Call
CLOSET(;; TDB; f list; FCI).

Subroutine CLOSET(X;DB; f list; FCI)

Parameters:

� X: the frequent itemset ifDB is anX-conditional
database, or ; if DB is TDB;

� DB: transaction database of conditional database;

� f list: frequent item list of DB;

� FCI: The set of frequent closed itemsets already
found.

Method:

1. Let Y be the set of items in f list such that
they appear in every transaction of DB, insert
X [ Y to FCI if it is not a proper subset of
some itemset in FCI with the same support; //
Applying Optimization 2

2. Build FP-tree for DB, items already be extracted
should be excluded; // Applying Optimization 1

3. Apply Optimization 3 to extract frequent closed
itemsets if it is possible;

4. Form conditional database for every remaining
item in f list, at the same time, compute local
frequent item lists for these conditional databases;

5. For each remaining item i in f list, starting from
the last one, call CLOSET(iX;DBji; f listi; FCI)
if iX is not a subset of any frequent closed itemset
already found with the same support count, where
DBji is the i-conditional database with respect to
DB and f listi is the corresponding frequent item
list. // Applying Optimization 4 2

Lemma 3.6 An itemset is a frequent closed itemset

i� CLOSET says so.

Proof. An itemset X is identi�ed as a frequent
closed itemset by CLOSET when (1) X is frequent,
(2) there is no item appearing in every transaction
in X-conditional database, and (3) X is not a proper
subset of any frequent closed itemset already found.
To have the lemma, we show that there is no frequent
closed itemset Y which can be found later such that
X � Y . Suppose we can �nd such an itemset Y .
Then (Y �X) 6= ; must happen in every transaction
of the X-conditional database. That leads to a
con
ict with the fact that there is no item appearing
in every transaction in the X-conditional database.
Thus, we have the lemma. 2

The correctness of the algorithm has been reasoned
step-by-step in this section. It generates the complete
set of frequent closed itemsets, as shown in Lemma
3.6. The four optimization techniques work with
the divide-and-conquer method to ensure that the
frequent closed itemsets can be extracted e�ciently,
and the search space can be reduced substantially.
However, if the transaction database is very large, we
cannot assume that the FP-tree can always be held
in main memory. In next section, we develop some
techniques to ensure the scalability of CLOSET in
large databases.

3.3 Scaling up CLOSET in large databases

As speci�ed in the last section, FP-tree contributes
substantially to the e�ciency of CLOSET. When
the transaction database is large, it is unrealistic to
construct a main memory-based FP-tree. In such
cases, we can �rst construct conditional databases
without FP-tree, or construct disk-based FP-trees.
Disk-based FP-tree has been discussed in [6]. In this
section, we focus on building conditional databases
without FP-tree.

A naive method is to expand all conditional
databases from one parent at a time. However,
such a method basically duplicates TDB l

2 times,
where l is the average number of frequent items in
transactions. If the transaction database is very
large, the transactions are long, and there are many
frequent items, construction of many conditional
databases could be a costly operation.

Here, we propose a partition-based approach, which
can reduce the space cost dramatically. We illustrate
the principle using the following example.

Example 3 Let us consider construction of condi-
tional databases in Example 2 using a partition-based
approach, as demonstrated in Figure 3.
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c:3

d-cond. DB
cefa
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Figure 3: Constructing conditional databases in
partition-based approach.

In the construction of conditional databases, in-
stead of copying a transaction to every conditional
database it takes part in, we only copy it to that of
the last f list item it contains. For example, d is the
last item of the f list the �rst transaction cefad con-
tains. So, instead of being copied into d- a- f- and
e-conditional databases simultaneously, the tuple is
only copied to the d-conditional database. After the
d-conditional database is processed, the transaction
is transferred to the conditional database of the sec-
ond to the last item a, and so on. In such a way, we
guarantee that at each level of recursion, the database
is partitioned at most once. But once the partition
is done, the original database can be gone. Such
a partition-based conditional database construction
needs to scan the database only once.

Please note that in the processing of a-conditional
database, it takes one scan of the a-conditional
database to partition it to fa- and ea-conditional
databases. At the same time, transactions in the a-
conditional database should be copied to the f- and
e-conditional databases. Figure 3 shows that how
cefad is copied to various conditional databases in
turn. 2

With the partition-based conditional database con-
struction, CLOSET can proceed without FP-tree at
the �rst several rounds when the transaction database
is large, and FP-trees are constructed only when the
size of conditional databases can �t in memory.

One may wonder if we still can use Optimization
3 without FP-tree. Fortunately, we still can use it by
maintaining one branch of FP-tree. The spirit is that
we only maintain the upper portion of FP-tree from
the root to the �rst node with more than one son
branch.

4 Performance Study

In this section, we report our performance study of
the three algorithms for mining frequent closed item-
sets: CLOSET, CHARM, and A-close. A-close �nds
frequent closed itemsets by (1) using the Apriori
framework, (2) pruning redundancies in candidates,
and (3) post-processing to generate complete but
non-duplicate result. CHARM explores a vertical data
format, and �nd frequent closet itemsets by comput-
ing intersections of sets of transaction ids (tids) for
itemsets.

All the experiments are performed on a 233MHz
Pentium PC with 128MB main memory, running on
Microsoft Windows/NT. All the programs are writ-
ten in Microsoft/Visual C++6.0. The A-close and
CHARM are implemented as described in [9] and [10].
We use runtime, i.e., the period between input and
output, to report our result, instead of using CPU

time measured in some literature.

We test the three methods on various datasets,
including synthetic ones generated by the standard
procedure described in [2], and real datasets used in
[4, 10]. Limited by space, we reported here only the
results on three datasets as follows.

� Synthetic dataset T25I20D100K with 10K items.
In this dataset, the average transaction size and
average maximal potentially frequent itemset size
are set to 25 and 20, respectively, while there are
totally 100K transactions. This dataset is sparse.
Most of frequent itemsets are closed.

� Real dataset I: Connect-4. This data set is
from the UC-Irvine Machine Learning Database
Repository4. It is compiled from the Connect-

4 game state information. The total number of
transactions is 67; 557, while each transaction is
with 43 items. It is a dense dataset with a lot of
long frequent itemsets.

� Real dataset II: pumsb. This data set is from
the IBM Almaden Research Center5. There are
49; 046 transactions in it, while each transaction
has 74 items. It is a dense dataset with many long
frequent itemsets.

4.1 Reduction of the size of itemsets
using frequent closed itemsets

Our experiments show that the number of frequent
itemsets which need to be represented in mining can
be reduced by an order of magnitude in a dense
database if they are represented by frequent closed
itemsets. For example, Table 2 lists the numbers

4http://www.ics.uci.edu/�mlearn/MLRepository.html
5http://www.almaden.ibm.com/cs/quest/demos.html
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of frequent closed itemsets (#F.C.I) and frequent
itemsets (#F.I), as well as their ratio, in dataset
Connect-4.

Support #F.C.I #F.I
#F.I
#F.C.I

64179 (95%) 812 2; 205 2:72
60801 (90%) 3; 486 27; 127 7:78
54046 (80%) 15; 107 533; 975 35:35
47290 (70%) 35; 875 4; 129; 839 115:12

Table 2: The number of frequent closed itemsets
and frequent itemsets in dataset Connect-4.(F.C.I for
frequent closed itemsets and F.I for frequent itemsets.)

If we want to mine association rules in a dense
database, such as Connect-4, mining the set of
frequent closed itemsets and then generating rules
only on them will reduce search space substantially
and generate much smaller set of rules. As the
support threshold decreases, the saving becomes
increasingly substantial.

4.2 Comparison of A-close, CHARM and
CLOSET

The scalabilities of A-close, CHARM and CLOSET are
tested using various datasets. CLOSET outperforms
both CHARM and A-close.

As shown in Figure 4, in sparse dataset I20T25100K,
a majority of frequent itemsets are closed itemsets.
The performance of A-close is close to that of Apriori.
The advantage of CLOSET over A-close is basically
the same as that of FP-growth over Apriori. In this
dataset, CHARM also wins Apriori. Since the support
threshold is low, and the transaction identi�cation
(tid) sets for frequent itemsets are relatively small,
CHARM is e�cient. But it is slower than CLOSET.

The advantage of CLOSET becomes signi�cant on
dense datasets. The results on dataset Connect-

4 is shown in Figure 5. Please note that the
runtime in this �gure is in logarithmic scale. For
example, CLOSET uses only 1690 seconds to �nd
out the complete set of 130; 101 frequent closed
itemsets, when the support threshold is set to 33779
(50%). A-close even cannot �nd the result for support
threshold 54046 (80%) within that time.

Pumsb is a challenging dataset. The results over
this dataset are shown in Figure 6. A-close uses
more than 250 seconds to �nd out the frequent
closed itemsets for support threshold 90%, but
CLOSET needs only less than 100 seconds to �nd out
that for support threshold 80%.

From the experiments, we can observe that a
non-trivial cost of CHARM is from many intersection
operations over large sets of tids. For example, in

dataset Connect-4, if the support threshold is set to
95%, each set of tids of frequent itemset contains at
least 67557� 95% = 64179 tids.

In order to test the scalability of CLOSET, we
generate the synthetic datasets with size in 2 to 10
times, and replicate the transactions of real datasets 2
to 10 times. We keep the support threshold constant
in percentage. The results are shown in Figure
7. The �gure shows that CLOSET is scalable with
the increase of the number of transactions. It is
interesting to see that the runtime of CLOSET over
real datasets increases much slower than the sizes
of real datasets do. That is because CLOSET scans
the transaction databses only twice. After that,
the mining is con�ned to the FP-tree. No matter
how many times the datasets are replicated, the
FP-tree remains in the same shape with respect to
the constant support threshold in percentage.

In summary, CLOSET is e�cient and scalable in
mining frequent closed itemsets in large databases.
It is much faster than A-close, and also faster than
CHARM.

5 Conclusions

Mining complete set of itemsets often su�ers from
generating a very large number of itemsets and
association rules. Mining frequent closed itemsets
provides an interesting alternative since it inherits
the same analytical power as mining the whole set
of frequent itemsets but generates a much smaller
set of frequent itemsets and leads to less and more
interesting association rules than the former.

In this paper, we proposed an FP-tree-based database
projection method, CLOSET, for e�cient mining of
frequent closed itemsets in large databases. Our pro-
posed algorithm, CLOSET, for mining closed item-
sets adopts three techniques: (1) applying a com-
pressed, frequent pattern tree FP-tree structure for
mining closed itemsets without candidate generation,
(2) developing a single pre�x path compression tech-
nique to identify frequent closed itemsets quickly, and
(3) exploring a partition-based projection mechanism
for scalable mining in large databases.

Our performance study shows that CLOSET is
e�cient and scalable over large databases, and is
faster than the previously proposed methods.
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Figure 4: Scalability with support thresh-
old on sparse dataset T25I20D100K.

Figure 5: Scalability with support thresh-
old on dense dataset Connect-4.

Figure 6: Scalability with support thresh-
old on dense dataset pumsb. Figure 7: Size scaleup on datasets.
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