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ABSTRACT

Many organizations today have more than very large data-
bases; they have databases that grow without limit at a
rate of several million records per day. Mining these con-
tinuous data streams brings unique opportunities, but also
new challenges. This paper describes and evaluates VFDT,
an anytime system that builds decision trees using constant
memory and constant time per example. VFDT can in-
corporate tens of thousands of examples per second using
off-the-shelf hardware. It uses Hoeffding bounds to guar-
antee that its output is asymptotically nearly identical to
that of a conventional learner. We study VFDT’s proper-
ties and demonstrate its utility through an extensive set of
experiments on synthetic data. We apply VFDT to mining
the continuous stream of Web access data from the whole
University of Washington main campus.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining; 1.2.6 [Artificial Intelligence]: Learning—
concept learning; 1.5.2 [Pattern Recognition]: Design Me-
thodology—-classifier design and evaluation

General Terms
Decision trees, Hoeffding bounds, incremental learning, disk-
based algorithms, subsampling

1. INTRODUCTION

Knowledge discovery systems are constrained by three main
limited resources: time, memory and sample size. In tradi-
tional applications of machine learning and statistics, sample
size tends to be the dominant limitation: the computational
resources for a massive search are available, but carrying out
such a search over the small samples available (typically less
than 10,000 examples) often leads to overfitting or “data
dredging” (e.g., [22, 16]). Thus overfitting avoidance be-
comes the main concern, and only a fraction of the available
computational power is used [3]. In contrast, in many (if not
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most) present-day data mining applications, the bottleneck
is time and memory, not examples. The latter are typically
in over-supply, in the sense that it is impossible with cur-
rent KDD systems to make use of all of them within the
available computational resources. As a result, most of the
available examples go unused, and underfitting may result:
enough data to model very complex phenomena is available,
but inappropriately simple models are produced because we
are unable to take full advantage of the data. Thus the de-
velopment of highly efficient algorithms becomes a priority.

Currently, the most efficient algorithms available (e.g., [17])
concentrate on making it possible to mine databases that do
not fit in main memory by only requiring sequential scans of
the disk. But even these algorithms have only been tested
on up to a few million examples. In many applications this
is less than a day’s worth of data. For example, every day
retail chains record millions of transactions, telecommunica-
tions companies connect millions of calls, large banks pro-
cess millions of ATM and credit card operations, and pop-
ular Web sites log millions of hits. As the expansion of the
Internet continues and ubiquitous computing becomes a re-
ality, we can expect that such data volumes will become
the rule rather than the exception. Current data mining
systems are not equipped to cope with them. When new
examples arrive at a higher rate than they can be mined,
the quantity of unused data grows without bounds as time
progresses. Even simply preserving the examples for future
use can be a problem when they need to be sent to tertiary
storage, are easily lost or corrupted, or become unusable
when the relevant contextual information is no longer avail-
able. When the source of examples is an open-ended data
stream, the notion of mining a database of fixed size itself
becomes questionable.

Ideally, we would like to have KDD systems that operate
continuously and indefinitely, incorporating examples as they
arrive, and never losing potentially valuable information.
Such desiderata are fulfilled by incremental learning meth-
ods (also known as online, successive or sequential meth-
ods), on which a substantial literature exists. However, the
available algorithms of this type (e.g., [20]) have significant
shortcomings from the KDD point of view. Some are reason-
ably efficient, but do not guarantee that the model learned
will be similar to the one obtained by learning on the same
data in batch mode. They are highly sensitive to example
ordering, potentially never recovering from an unfavorable
set of early examples. Others produce the same model as



the batch version, but at a high cost in efficiency, often to
the point of being slower than the batch algorithm.

This paper proposes Hoeffding trees, a decision-tree learning
method that overcomes this trade-off. Hoeffding trees can
be learned in constant time per example (more precisely,
in time that is worst-case proportional to the number of
attributes), while being nearly identical to the trees a con-
ventional batch learner would produce, given enough exam-
ples. The probability that the Hoeffding and conventional
tree learners will choose different tests at any given node de-
creases exponentially with the number of examples. We also
describe and evaluate VFDT, a decision-tree learning system
based on Hoeffding trees. VFDT is I/O bound in the sense
that it mines examples in less time than it takes to input
them from disk. It does not store any examples (or parts
thereof) in main memory, requiring only space proportional
to the size of the tree and associated sufficient statistics. It
can learn by seeing each example only once, and therefore
does not require examples from an online stream to ever
be stored. It is an anytime algorithm in the sense that a
ready-to-use model is available at any time after the first
few examples are seen, and its quality increases smoothly
with time.

The next section introduces Hoeffding trees and studies their
properties. We then describe the VFDT system and its em-
pirical evaluation. The paper concludes with a discussion of
related and future work.

2. HOEFFDING TREES

The classification problem is generally defined as follows. A
set of N training examples of the form (x,y) is given, where
y is a discrete class label and x is a vector of d attributes,
each of which may be symbolic or numeric. The goal is to
produce from these examples a model y = f(x) that will pre-
dict the classes y of future examples x with high accuracy.
For example, x could be a description of a client’s recent
purchases, and y the decision to send that customer a cat-
alog or not; or x could be a record of a cellular-telephone
call, and y the decision whether it is fraudulent or not. One
of the most effective and widely-used classification methods
is decision tree learning [1, 15]. Learners of this type in-
duce models in the form of decision trees, where each node
contains a test on an attribute, each branch from a node
corresponds to a possible outcome of the test, and each leaf
contains a class prediction. The label y = DT'(x) for an ex-
ample x is obtained by passing the example down from the
root to a leaf, testing the appropriate attribute at each node
and following the branch corresponding to the attribute’s
value in the example. A decision tree is learned by recur-
sively replacing leaves by test nodes, starting at the root.
The attribute to test at a node is chosen by comparing all
the available attributes and choosing the best one accord-
ing to some heuristic measure. Classic decision tree learners
like ID3, C4.5 and CART assume that all training examples
can be stored simultaneously in main memory, and are thus
severely limited in the number of examples they can learn
from. Disk-based decision tree learners like SLIQ [10] and
SPRINT [17] assume the examples are stored on disk, and
learn by repeatedly reading them in sequentially (effectively
once per level in the tree). While this greatly increases the
size of usable training sets, it can become prohibitively ex-

pensive when learning complex trees (i.e., trees with many
levels), and fails when datasets are too large to fit in the
available disk space.

Our goal is to design a decision tree learner for extremely
large (potentially infinite) datasets. This learner should re-
quire each example to be read at most once, and only a small
constant time to process it. This will make it possible to di-
rectly mine online data sources (i.e., without ever storing the
examples), and to build potentially very complex trees with
acceptable computational cost. We achieve this by noting
with Catlett [2] and others that, in order to find the best
attribute to test at a given node, it may be sufficient to con-
sider only a small subset of the training examples that pass
through that node. Thus, given a stream of examples, the
first ones will be used to choose the root test; once the root
attribute is chosen, the succeeding examples will be passed
down to the corresponding leaves and used to choose the ap-
propriate attributes there, and so on recursively.? We solve
the difficult problem of deciding exactly how many exam-
ples are necessary at each node by using a statistical result
known as the Hoeffding bound (or additive Chernoff bound)
[7, 9]. Consider a real-valued random variable r whose range
is R (e.g., for a probability the range is one, and for an in-
formation gain the range is log ¢, where c is the number of
classes). Suppose we have made n independent observations
of this variable, and computed their mean 7. The Hoeffding
bound states that, with probability 1 — §, the true mean of
the variable is at least ¥ — ¢, where
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The Hoeffding bound has the very attractive property that it
is independent of the probability distribution generating the
observations. The price of this generality is that the bound
is more conservative than distribution-dependent ones (i.e.,
it will take more observations to reach the same ¢ and ).
Let G(X;) be the heuristic measure used to choose test at-
tributes (e.g., the measure could be information gain as in
C4.5, or the Gini index as in CART). Our goal is to ensure
that, with high probability, the attribute chosen using n ex-
amples (where n is as small as possible) is the same that
would be chosen using infinite examples. Assume G is to
be maximized, and let X, be the attribute with highest ob-
served G after seeing n examples, and X be the second-best
attribute. Let AG = G(Xa) — G(Xp) > 0 be the difference
between their observed heuristic values. Then, given a de-
sired §, the Hoeffding bound guarantees that X, is the cor-
rect choice with probability 1 — § if n examples have been
seen at this node and AG > .2 In other words, if the ob-

!"We assume the examples are generated by a stationary
stochastic process (i.e., their distribution does not change
over time). If the examples are being read from disk, we
assume that they are in random order. If this is not the
case, they should be randomized, for example by creating a
random index and sorting on it.

2In this paper we assume that the third-best and lower at-
tributes have sufficiently smaller gains that their probability
of being the true best choice is negligible. We plan to lift
this assumption in future work. If the attributes at a given
node are (pessimistically) assumed independent, it simply
involves a Bonferroni correction to ¢ [11].



served AG > ¢ then the Hoeffding bound guarantees that
the true AG > AG — e > 0 with probability 1 — §, and
therefore that X, is indeed the best attribute with proba-
bility 1 — §. This is valid as long as the G value for a node
can be viewed as an average of GG values for the examples
at that node, as is the case for the measures typically used.
Thus a node needs to accumulate examples from the stream
until ¢ becomes smaller than AG. (Notice that e is a mono-
tonically decreasing function of n.) At this point the node
can be split using the current best attribute, and succeeding
examples will be passed to the new leaves. This leads to the
Hoeffding tree algorithm, shown in pseudo-code in Table 1.

The counts n;j, are the sufficient statistics needed to com-
pute most heuristic measures; if other quantities are re-
quired, they can be similarly maintained. Pre-pruning is
carried out by considering at each node a “null” attribute
Xy that consists of not splitting the node. Thus a split will
only be made if, with confidence 1—§, the best split found is
better according to G than not splitting. The pseudo-code
shown is only for discrete attributes, but its extension to
numeric ones is immediate, following the usual method of
allowing tests of the form “(X; < x;;)?,” and computing G
for each allowed threshold z;;. The sequence of examples
S may be infinite, in which case the procedure never termi-
nates, and at any point in time a parallel procedure can use
the current tree HT to make class predictions. If d is the
number of attributes, v is the maximum number of values
per attribute, and c¢ is the number of classes, the Hoeffding
tree algorithm requires O(dvc) memory to store the neces-
sary counts at each leaf. If [ is the number of leaves in the
tree, the total memory required is O(ldvc). This is inde-
pendent of the number of examples seen, if the size of the
tree depends only on the “true” concept and is independent
of the size of the training set. (Although this is a common
assumption in the analysis of decision-tree and related al-
gorithms, it often fails in practice. Section 3 describes a
refinement to the algorithm to cope with this.)

A key property of the Hoeffding tree algorithm is that it is
possible to guarantee under realistic assumptions that the
trees it produces are asymptotically arbitrarily close to the
ones produced by a batch learner (i.e., a learner that uses
all the examples to choose a test at each node). In other
words, the incremental nature of the Hoeffding tree algo-
rithm does not significantly affect the quality of the trees it
produces. In order to make this statement precise, we need
to define the notion of disagreement between two decision
trees. Let P(x) be the probability that the attribute vector
(loosely, example) x will be observed, and let I(.) be the
indicator function, which returns 1 if its argument is true
and 0 otherwise.

DEFINITION 1. The extensional disagreement A, between
two decision trees DT1 and DT» is the probability that they
will produce different class predictions for an example:

Ac(DTy,DTp) = Y P(x)I[DT}(x) # DT5(x)]

Consider that two internal nodes are different if they con-
tain different tests, two leaves are different if they contain
different class predictions, and an internal node is different

Table 1: The Hoeffding tree algorithm.

Inputs: S is a sequence of examples,

X is a set of discrete attributes,

G(.) is a split evaluation function,

é is one minus the desired probability of
choosing the correct attribute at any
given node.

Output: HT is a decision tree.

Procedure HoeffdingTree (S, X, G, 9)
Let HT be a tree with a single leaf [; (the root).
Let X1 =X U{Xp}.
Let G1(Xy) be the G obtained by predicting the most
frequent class in S.
For each class yy
For each value z;; of each attribute X; € X
Let Nijk (ll) = 0.
For each example (x,yx) in S
Sort (x,y) into a leaf [ using HT.
For each z;; in x such that X; € X
Increment n;;x(1).
Label [ with the majority class among the examples
seen so far at [.
If the examples seen so far at [ are not all of the same
class, then
Compute G;(X;) for each attribute X; € X; — {Xj}
using the counts n;;(1).
Let X, be the attribute with highest G.
Let X3 be the attribute with second-highest G.
Compute € using Equation 1.
If Gi(Xa) — Gi(Xp) > € and X, # Xy, then
Replace [ by an internal node that splits on X,.
For each branch of the split
Add a new leaf l,,, and let Xm = X — {X,}.
Let Gin(Xy) be the G obtained by predicting
the most frequent class at ln,.
For each class yi, and each value z;; of each
attribute X; € Xm — {Xp}
Let nijk(lm) =0.
Return HT.

from a leaf. Consider also that two paths through trees are
different if they differ in length or in at least one node.

DEFINITION 2. The intensional disagreement A; between
two decision trees DT1 and DT5 is the probability that the
path of an example through DTi will differ from its path
through DT5:

Ay(DTy, DT) = Y P(x)I[Pathi (x) # Patha(x)]

where Path;(x) is the path of example x through tree DT;.

Two decision trees agree intensionally on an example iff
they are indistinguishable for that example: the example
is passed down exactly the same sequence of nodes, and
receives an identical class prediction. Intensional disagree-
ment is a stronger notion than extensional disagreement, in
the sense that VDTl,DTg A; (DT17 DTQ) > Ae(DTl, DTQ).



Let p; be the probability that an example that reaches level
l in a decision tree falls into a leaf at that level. To sim-
plify, we will assume that this probability is constant, i.e.,
V1 pi = p, where p will be termed the leaf probability. This
is a realistic assumption, in the sense that it is typically ap-
proximately true for the decision trees that are generated
in practice. Let HT;s be the tree produced by the Hoeffd-
ing tree algorithm with desired probability § given an in-
finite sequence of examples S, and DT, be the asymptotic
batch decision tree induced by choosing at each node the at-
tribute with true greatest G (i.e., by using infinite examples
at each node). Let E[A;(HTs, DT.)] be the expected value
of A;(HTs,DT,), taken over all possible infinite training
sequences. We can then state the following result.

THEOREM 1. If HTjs is the tree produced by the Hoeffding
tree algorithm with desired probability 0 given infinite exam-

ples (Table 1), DT, is the asymptotic batch tree, and p is
the leaf probability, then E[A;(HTs, DT.)] < §/p.

Proof. For brevity, we will refer to intensional disagreement
simply as disagreement. Consider an example x that falls
into a leaf at level I, in HTjs, and into a leaf at level g in
DT.. Let I = min{ly,l4}. Let Pathg(x) = (N{ (x), N3 (x),
..., N1 (x)) be x’s path through HTj5 up to level [, where
N (x) is the node that x goes through at level i in HTj,
and similarly for Pathp(x), x’s path through DT%. If i =1
then N/ (x) is a leaf with a class prediction, and simi-
larly for NP(x) if | = ls. Let I; represent the proposi-
tion “Pathp(x) = Pathp(x) up to and including level 7,”
with o = True. Notice that P(lp # lq) is included in
P(N(x) # NP(x)|I,_1), because if the two paths have
different lengths then one tree must have a leaf where the
other has an internal node. Then, omitting the dependency
of the nodes on x for brevity,

P(Pathp (x) # Pathp(x))
= PN #NP VNI £NPv...VNT#£NP)
= P(N{' # NP|Io) + P(N3" # N3 |I) + ...
+P(NLH # NlDulfl)

l
= Y PN #NP|Lioy) <

i=1 2

5 = ol (2)
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Let HT5(S) be the Hoeffding tree generated from training
sequence S. Then E[A;(HTs, DT.)] is the average over all
infinite training sequences S of the probability that an exam-
ple’s path through HTs(S) will differ from its path through
DT.:

E[A;(HTs, DT)]
> P(S)) | P(x) I[Pathp (x) # Pathp(x)]
S x

> P(x) P(Pathy (x) # Pathp(x))

> > P(x) P(Pathp(x) # Pathp(x)) (3)

i=1x€EL,;

where L; is the set of examples that fall into a leaf of DT
at level 7. According to Equation 2, the probability that

an example’s path through HT5(S) will differ from its path
through DT, given that the latter is of length 4, is at most
0i (since ¢ >1). Thus

E[A(HTs, DT.)] < Y " P(x)(50)
i=1x€EL,;
= > (6i) Y Px) (4)
i=1 xeL;
The sum ), ; P(x) is the probability that an example x

will fall into a leaf of DT at level ¢, and is equal to 1-
p)*~p, where p is the leaf probability. Therefore

E[A:(HTs, DT.)]

< Z(5i)(1—p)i’1p = 61021'(1—19)1'71

oo

PICEORED B (IR

I
<

i=k
1 1- 1—p)k?

- 6p[—+—p+~~+( P ]
p p p

= 6[1—|—(1—p)—|— +(1—p)’“*1+~~]

This completes the demonstration of Theorem 1. O

An immediate corollary of Theorem 1 is that the expected
extensional disagreement between HTs and DT is also asym-
ptotically at most §/p (although in this case the bound is
much looser). Another corollary (whose proof we omit here
in the interests of space) is that there exists a subtree of the
asymptotic batch tree such that the expected disagreement
between it and the Hoeffding tree learned on finite data is at
most d/p. In other words, if §/p is small then the Hoeffding
tree learned on finite data is very similar to a subtree of the
asymptotic batch tree. A useful application of Theorem 1 is
that, instead of §, users can now specify as input to the Ho-
effding tree algorithm the maximum expected disagreement
they are willing to accept, given enough examples for the
tree to settle. The latter is much more meaningful, and can
be intuitively specified without understanding the workings
of the algorithm or the Hoeffding bound. The algorithm will
also need an estimate of p, which can easily be obtained (for
example) by running a conventional decision tree learner on
a manageable subset of the data. How practical are these
bounds? Suppose that the best and second-best attribute
differ by 10% (i.e., ¢/R = 0.1). Then, according to Equa-
tion 1, ensuring § = 0.1% requires 380 examples, and en-
suring 6 = 0.0001% requires only 345 additional examples.
An exponential improvement in ¢, and therefore in expected
disagreement, can be obtained with a linear increase in the
number of examples. Thus, even with very small leaf prob-
abilities (i.e., very large trees), very good agreements can
be obtained with a relatively small number of examples per



node. For example, if p = 0.01%, an expected disagreement
of at most 1% can be guaranteed with 725 examples per
node. If p = 1%, the same number of examples guarantees
a disagreement of at most 0.01%.

3. THE VFDT SYSTEM

We have implemented a decision-tree learning system based
on the Hoeffding tree algorithm, which we call VFDT (Very
Fast Decision Tree learner). VFDT allows the use of either
information gain or the Gini index as the attribute evalu-
ation measure. It includes a number of refinements to the
algorithm in Table 1:

Ties. When two or more attributes have very similar Gs,
potentially many examples will be required to decide
between them with high confidence. This is presum-
ably wasteful, because in this case it makes little dif-
ference which attribute is chosen. Thus VFDT can op-
tionally decide that there is effectively a tie and split
on the current best attribute if AG < € < 7, where T
is a user-specified threshold.

G computation. The most significant part of the time cost
per example is recomputing G. It is inefficient to re-
compute G for every new example, because it is un-
likely that the decision to split will be made at that
specific point. Thus VFDT allows the user to specify a
minimum number of new examples 1.m,in that must be
accumulated at a leaf before G is recomputed. This ef-
fectively reduces the global time spent on G computa-
tions by a factor of n.min, and can make learning with
VEDT nearly as fast as simply classifying the train-
ing examples. Notice, however, that it will have the
effect of implementing a smaller § than the one speci-
fied by the user, because examples will be accumulated
beyond the strict minimum required to choose the cor-
rect attribute with confidence 1 — §. (This increases
the time required to build a node, but our experiments
show that the net effect is still a large speedup.) Be-
cause 0 shrinks exponentially fast with the number of
examples, the difference could be large, and the ¢ in-
put to VFDT should be correspondingly larger than
the target.

Memory. Aslong as VFDT processes examples faster than
they arrive, which will be the case in all but the most
demanding applications, the sole obstacle to learning
arbitrarily complex models will be the finite RAM avail-
able. VFDT’s memory use is dominated by the mem-
ory required to keep counts for all growing leaves. If
the maximum available memory is ever reached, VEDT
deactivates the least promising leaves in order to make
room for new ones. If p; is the probability that an arbi-
trary example will fall into leaf [, and e; is the observed
error rate at that leaf, then p;e; is an upper bound on
the error reduction achievable by refining the leaf. p;e;
for a new leaf is estimated using the counts at the par-
ent for the corresponding attribute value. The least
promising leaves are considered to be the ones with the
lowest values of p;e;. When a leaf is deactivated, its
memory is freed, except for a single number required to
keep track of p;e;. A leaf can then be reactivated if it
becomes more promising than currently active leaves.

This is accomplished by, at regular intervals, scanning
through all the active and inactive leaves, and replac-
ing the least promising active leaves with the inactive
ones that dominate them.

Poor attributes. Memory usage is also minimized by drop-
ping early on attributes that do not look promising. As
soon as the difference between an attribute’s G and the
best one’s becomes greater than €, the attribute can be
dropped from consideration, and the memory used to
store the corresponding counts can be freed.

Initialization. VFDT can be initialized with the tree pro-
duced by a conventional RAM-based learner on a small
subset of the data. This tree can either be input as is,
or over-pruned to contain only those nodes that VFDT
would have accepted given the number of examples at
them. This can give VFDT a “head start” that will al-
low it to reach the same accuracies at smaller numbers
of examples throughout the learning curve.

Rescans. VFDT can rescan previously-seen examples. This
option can be activated if either the data arrives slowly
enough that there is time for it, or if the dataset is fi-
nite and small enough that it is feasible to scan it mul-
tiple times. This means that VFDT need never grow a
smaller (and potentially less accurate) tree than other
algorithms because of using each example only once.

The next section describes an empirical study of VFDT,
where the utility of these refinements is evaluated.

4. EMPIRICAL STUDY

4.1 Synthetic data

A system like VFDT is only useful if it is able to learn
more accurate trees than a conventional system, given simi-
lar computational resources. In particular, it should be able
to use to advantage the examples that are beyond a con-
ventional system’s ability to process. In this section we test
this empirically by comparing VFDT with C4.5 release 8
[15] on a series of synthetic datasets. Using these allows us
to freely vary the relevant parameters of the learning pro-
cess. In order to ensure a fair comparison, we restricted the
two systems to using the same amount of RAM. This was
done by setting VFDT’s “available memory” parameter to
40MB, and giving C4.5 the maximum number of examples
that would fit in the same memory (100k examples).> VFDT
used information gain as the G function. Fourteen concepts
were used for comparison, all with two classes and 100 bi-
nary attributes. The concepts were created by randomly
generating decision trees as follows. At each level after the
first three, a fraction f of the nodes was replaced by leaves;
the rest became splits on a random attribute (that had not
been used yet on a path from the root to the node being
considered). When the decision tree reached a depth of 18,
all the remaining growing nodes were replaced with leaves.
Each leaf was randomly assigned a class. The size of the re-
sulting concepts ranged from 2.2k leaves to 61k leaves with
a median of 12.6k. A stream of training examples was then

SVFDT occasionally grew slightly beyond 40MB because
the limit was only enforced on heap-allocated memory. C4.5
always exceeded 40MB by the size of the unpruned tree.



generated by sampling uniformly from the instance space,
and assigning classes according to the target tree. We added
various levels of class and attribute noise to the training ex-
amples, from 0 to 30%.* (A noise level of n% means that
each class/attribute value has a probability of n% of being
reassigned at random, with equal probability for all values,
including the original one.) In each run, 50k separate ex-
amples were used for testing. C4.5 was run with all default
settings. We ran our experiments on two Pentium 6/200
MHz, one Pentium II/400 MHz, and one Pentium III/500
MHz machine, all running Linux.

Figure 1 shows the accuracy of the learners averaged over
all the runs. VFDT was run with § = 1077, 7 = 5%,
Nmin = 200, no leaf reactivation, and no rescans. VFDT-
boot is VFDT bootstrapped with an over-pruned version
of the tree produced by C4.5. C4.5 is more accurate than
VEDT up to 25k examples, and the accuracies of the two
systems are similar in the range from 25k to 100k examples
(at which point C4.5 is unable to consider further exam-
ples). Most significantly, VFDT is able to take advantage of
the examples after 100k to greatly improve accuracy (88.7%
for VFDT and 88.8% for VFDT-boot, vs. 76.5% for C4.5).
C4.5’s early advantage comes from the fact it reuses exam-
ples to make decisions on multiple levels of the tree it is
inducing, while VFDT uses each example only once. As ex-
pected, VFDT-boot’s initialization lets it achieve high accu-
racy more quickly than without it. However, VFDT-boot’s
performance is surprising in that its accuracy is much higher
than C4.5’s at 100k examples, when VFDT-boot has not
seen any examples that C4.5 did not. An explanation for
this is that many of the experiments reported in Figure 1
contained noise, and, as Catlett [2] showed, over-pruning can
be very effective at reducing overfitting in noisy domains.

Figure 2 shows the average number of nodes in the trees
induced by each of the learners. Notice that VFDT and
VFEDT-boot induce trees with similar numbers of nodes, and
that both achieve greater accuracy with far fewer nodes than
C4.5. This suggests that using VFEDT can substantially in-
crease the comprehensibility of the trees induced relative to
C4.5. It also suggests that VFDT is less prone than C4.5 to
overfitting noisy data.

Figure 3 shows how the algorithms respond to noise. It com-
pares four runs on the same concept (with 12.6k leaves),
but with increasing levels of noise added to the training ex-
amples. C4.5’s accuracy reports are for training sets with
100k examples, and VFDT and VFDT-boot’s are for train-
ing sets of 20 million examples. VFDT’s advantage com-
pared to C4.5 increases with the noise level. This is fur-
ther evidence that use of the Hoeffding bound is an effective
pruning method.

1The exact concepts used were, in the form (f, mnoise
level, #nodes, #leaves): (0.15, 0.10, 74449, 37225), (0.15,
0.10, 13389, 6695), (0.17, 0.10, 78891, 39446), (0.17, 0.10,
93391, 46696), (0.25, 0.00, 25209, 12605), (0.25, 0.20, 25209,
12605), (0.25, 0.30, 25209, 12605), (0.25, 0.00, 15917, 7959),
(0.25, 0.10, 31223, 15612), (0.25, 0.15, 16781, 8391), (0.25,
0.20, 4483, 2242), (0.28, 0.10, 122391, 61196), (0.28, 0.10,
6611, 3306), (0.25, 0.10, 25209, 12605). The last set of pa-
rameters was also used as the basis for the lesion studies
reported below.
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Figure 1: Accuracy as a function of the number of
training examples.
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Figure 2: Tree size as a function of the number of
training examples.
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Figure 4 shows how the algorithms compare on six concepts
of varying size.® All the training sets had 10% noise. As be-
fore, C4.5’s results are for learning on 100k examples, while
VFDT and VFDT-boot’s are for 20 million. Both versions
of VFDT do better than C4.5 on every concept size con-
sidered. However, contrary to what we would expect, as
concept size increases the relative benefit seems to remain
approximately constant for VFDT and VFDT-boot. Look-
ing deeper, we find that with 20 million examples VFDT
and VFDT-boot induce trees with approximately 9k nodes
regardless of the size of the underlying concept. This sug-
gests that they would take good advantage of even more
training examples.

We carried out all runs without ever writing VFDT’s train-
ing examples to disk (i.e., generating them on the fly and
passing them directly to VFDT). For time comparison pur-
poses, however, we measured the time it takes VFDT to
read examples from the (0.25, 0.10, 25209, 12605) data set
from disk on the Pentium III/500 MHz machine. VFDT
takes 5752 seconds to read the 20 million examples, and 625
seconds to process them. In other words, learning time is
about an order of magnitude less than input time. On the
same runs, C4.5 takes 36 seconds to read and process 100k
examples, and VFDT takes 47 seconds.

Finally, we generated 160 million examples from the (0.25,
0.10, 25209, 12605) concept. Figure 5 compares VFDT and
C4.5 on this data set. VFDT makes progress over the entire
data set, but begins to asymptote after 10 million examples;
the final 150 million examples contribute 0.58% to accuracy.
VFDT took 9501 seconds to process the examples (excluding
I/0) and induced 21.9k leaves. In the near future we plan
to carry out similar runs with more complex concepts and
billions of examples.

4.2 Leson studies

We conducted a series of lesion studies to evaluate the effec-
tiveness of some of the components and parameters of the
VEDT system. Figure 6 shows the accuracy of the learners
on the (0.25, 0.00, 25209, 12605) data set. It also shows a
slight modification to the VFDT-boot algorithm, where the
tree produced by C4.5 is used without first over-pruning it.
All versions of VFDT were run with 6§ = 1077, 7 = 5%,
Nmin = 200, no leaf reactivation, and no rescans. C4.5
does better without noise than with it, but VFDT is still
able to use additional data to significantly improve accu-
racy. VEFDT-boot with the “no over-prune” setting is ini-
tially better than the over-pruning version, but does not
make much progress and is eventually overtaken. We hy-
pothesize that this is because it has difficulty overcoming
the poor low-confidence decisions C4.5 made near its leaves.

In the remainder of the lesion studies VFDT was run on the
(0.25, 0.10, 25209, 12605) data set with 6 = 1077, 7 = 5%,
Nmin = 200, no leaf reactivation, and no rescans. We eval-
uated the effect of disabling ties, so that VFDT does not
make any splits until it is able to identify a clear winner.

®The concept (0.15, 0.10, 74449, 37225) turned out to be
atypically easy, and is not included in the graph to avoid
obscuring the trend. The observed accuracies for this con-
ceptwwere: C4.5 — 83.1%; VFDT - 89.0%; VFDT-boot —
89.7%.
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We conducted two runs, holding all parameters constant ex-
cept that the second run never split with a tie. Without ties
VFDT induced a tree with only 65 nodes and 72.9% accu-
racy, compared to 8k nodes and 86.9% accuracy with ties.
VFDT-boot without ties produced 805 nodes and 83.3% ac-
curacy, compared to 8k nodes and 88.5% accuracy with ties.
We also carried out two runs holding all parameters con-
stant except Mmin, the number of new examples that must
be seen at a node before G’s are recomputed. The first run
recomputed G every 200 examples (nmin = 200), and the
second did it for every example (nmin = 1). Doing the G
computations for every example, VFDT gained 1.1% accu-
racy and took 3.8 times longer to run. VFDT-boot lost 0.9%
accuracy and took 3.7 times longer. Both learners induced
about 5% more nodes with the more frequent G computa-
tions. We then carried out two runs holding all parameters
but VFDT’s memory limit constant. The first run was al-
lowed 40 MB of memory; the second was allowed 80 MB.
VEDT and VFDT-boot both induced 7.8k more nodes with
the additional memory, which improved VFDT’s accuracy
by 3.0% and VFDT-boot’s by 3.2%. Finally, we carried
out two runs holding all parameters but § constant. The
first run had a delta of 1072, and the second had a delta
of 1077. With the lower §, VFDT and VFDT-boot both
induced about 30% fewer nodes than with the higher one.
VFDT’s accuracy was 2.3% higher and VFDT-boot’s accu-
racy was 1.0% higher with the lower §.

4.3 Web data

We are currently applying VFDT to mining the stream of
Web page requests emanating from the whole University
of Washington main campus. The nature of the data is
described in detail in [23]. In our experiments so far we
have used a one-week anonymized trace of all the external
web accesses made from the university campus. There were
23,000 active clients during this one-week trace period, and
the entire university population is estimated at 50,000 peo-
ple (students, faculty and staff). The trace contains 82.8
million requests, which arrive at a peak rate of 17,400 per
minute. The size of the compressed trace file is about 20
GB.% Each request is tagged with an anonymized organi-
zation ID that associates the request with one of the 170
organizations (colleges, departments, etc.) within the uni-
versity. One purpose this data can be used for is to im-
prove Web caching. The key to this is predicting as accu-
rately as possible which hosts and pages will be requested in
the near future, given recent requests. We applied decision-
tree learning to this problem in the following manner. We
split the campus-wide request log into a series of equal time
slices Ty, Th, ..., Ty, ...; in the experiments we report, each
time slice is an hour. For each organization O1,O2,... ,O;,
..., O170 and each of the 244k hosts appearing in the logs
H.,... ,Hj,...,Hour, we maintain a count of how many
times the organization accessed the host in the time slice,
Cijt. We discretize these counts into four buckets, repre-
senting “no requests,” “1 — 12 requests,” “13 — 25 requests”
and “26 or more requests.” Then for each time slice and
host accessed in that time slice (7%, H;) we generate an ex-
ample with attributes ¢ mod 24,C4 j¢, ..., Cijt, . .. Ci70,jt

This log is from May 1999. Traffic in May 2000 was double
this size; a one-week log was approximately 50 GB com-
pressed.
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Figure 7: Performance on Web data.

and class 1 if H; is requested in time slice T;4+1 and 0 if it
is not. This can be carried out in real time using modest
resources by keeping statistics on the last and current time
slices Ct—1 and C} in memory, only keeping counts for hosts
that actually appear in a time slice (we never needed more
than 30k counts), and outputting the examples for C;_1 as
soon as C; is complete. Using this procedure we obtained
a dataset containing 1.89 million examples, 61.1% of which
were labeled with the most common class (that the host did
not appear again in the next time slice).

Testing was carried out on the examples from the last day
(276,230 examples). VFDT was run with § = 1077, 7 = 5%,
and nmin = 200. All runs were carried out on a 400 MHz
Pentium machine. A decision stump (a decision tree with
only one node) obtains 64.2% accuracy on this data. The
decision stump took 1277 seconds to learn, and VFDT took
1450 seconds to do one pass over the training data (after
being initialized with C4.5’s over-pruned tree). The major-
ity of this time (983 seconds) was spent reading data from
disk. The bootstrap run of C4.5 took 2975 seconds to learn
on a subsample of 74.5k examples (as many as would fit
in 40 MB of RAM) and achieved 73.3% accuracy. Thus
VEDT learned faster on 1.61 million examples than C4.5
did on 75k. We also used a machine with 1 GB of RAM to
run C4.5 on the entire 1.61 million training examples; the
run took 24 hours and the resulting tree was 75% accurate.
Figure 7 shows VFDT-boot’s performance on this dataset,
using 1 GB of RAM. We extended VFDT"’s run out to 4 mil-
lion examples by rescanning. The x axis shows the number
of examples presented to VFDT after the C4.5 bootstrap
phase was complete. Accuracy improves steadily as more
examples are seen. VFDT is able to achieve accuracy simi-
lar to C4.5’s in a small fraction of the time. Further, C4.5’s
memory requirements and batch nature will not allow it to
scale to traces much larger than a week, while VFDT can
easily incorporate data indefinitely. The next step is to ap-
ply VEDT to predicting page requests from a given host.
We also plan to address issues related to time-changing be-
havior and then set VFDT running permanently, learning
and relearning as dictated by the data stream.



5. RELATED WORK

Previous work on mining large databases using subsampling
methods includes the following. Catlett [2] proposed several
heuristic methods for extending RAM-based batch decision-
tree learners to datasets with up to hundreds of thousands
of examples. Musick, Catlett and Russell [13] proposed and
tested (but did not implement in a learner) a theoretical
model for choosing the size of subsamples to use in compar-
ing attributes. Maron and Moore [9] used Hoeffding bounds
to speed selection of instance-based regression models via
cross-validation (see also [12]). Gratch’s Sequential ID3 [6]
used a statistical method to minimize the number of ex-
amples needed to choose each split in a decision tree. (Se-
quential ID3’s guarantees of similarity to the batch tree were
much looser than those derived here for Hoeffding trees, and
it was only tested on repeatedly sampled small datasets.)
Gehrke et al.’s BOAT [5] learned an approximate tree using
a fixed-size subsample, and then refined it by scanning the
full database. Provost et al. [14] studied different strategies
for mining larger and larger subsamples until accuracy (ap-
parently) asymptotes. In contrast to systems that learn in
main memory by subsampling, systems like SLIQ [10] and
SPRINT [17] use all the data, and concentrate on optimizing
access to disk by always reading examples (more precisely,
attribute lists) sequentially. VFDT combines the best of
both worlds, accessing data sequentially and using subsam-
pling to potentially require much less than one scan, as op-
posed to many. This allows it to scale to larger databases
than either method alone. VFDT has the additional advan-
tages of being incremental and anytime: new examples can
be quickly incorporated as they arrive, and a usable model is
available after the first few examples and then progressively
refined.

As mentioned previously, there is a large literature on incre-
mental learning, which space limitations preclude reviewing
here. The system most closely related to ours is Utgoff’s
[20] ID5R (extended in [21]). ID5R learns the same tree as
ID3 (a batch method), by restructuring subtrees as needed.
While its learning time is linear in the number of exam-
ples, it is worst-case exponential in the number of attributes.
On the simple, noise-free problems it was tested on, it was
much slower than ID3; noise would presumably aggravate
this. Thus ID5R does not appear viable for learning from
high-speed data streams.

A number of efficient incremental or single-pass algorithms
for KDD tasks other than supervised learning have appeared
in recent years (e.g., clustering [4] and association rule min-
ing [19]). A substantial theoretical literature on online al-
gorithms exists (e.g., [8]), but it focuses on weak learners
(e.g., linear separators), because little can be proved about
strong ones like decision trees.

6. FUTURE WORK

We plan to shortly compare VFDT with SPRINT/SLIQ.
VFDT may outperform these even in fully disk-resident data-
sets, because it can learn in less than one scan while the
latter require multiple scans, and the dominant component
of their cost is often the time required to read examples
from disk multiple times. VFDT’s speed and anytime char-
acter make it ideal for interactive data mining; we plan to

also study its application in this context (see [18]). Other
directions for future work include: further developing the
application of VFDT to Web log data; studying other ap-
plications of VFDT (e.g., intrusion detection); using non-
discretized numeric attributes in VFDT; studying the use of
post-pruning in VFDT; further optimizing VFDT’s compu-
tations (e.g., by recomputing G’s exactly when we can tell
that the current example may cause the Hoeffding bound to
be reached); using adaptive ¢’s; studying the use of an ex-
ample cache in main memory to speed induction by reusing
examples at multiple levels; comparing VEDT to ID5R and
other incremental algorithms; adapting VFDT to learn evolv-
ing concepts in time-changing domains; adapting VFDT to
learning with imbalanced classes and asymmetric misclassi-
fication costs; adapting VFDT to the extreme case where
even the final decision tree (without any stored sufficient
statistics) does not fit in main memory; parallelizing VFDT;
applying the ideas described here to other types of learning
(e.g., rule induction, clustering); etc.

7. CONCLUSION

This paper introduced Hoeffding trees, a method for learning
online from the high-volume data streams that are increas-
ingly common. Hoeffding trees allow learning in very small
constant time per example, and have strong guarantees of
high asymptotic similarity to the corresponding batch trees.
VFEDT is a high-performance data mining system based on
Hoeftfding trees. Empirical studies show its effectiveness in
taking advantage of massive numbers of examples. VFDT’s
application to a high-speed stream of Web log data is under
way.
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