MetaCost: A General Method for Making Classifiers Cost-Sensitive

Pedro Domingos
Artificial Intelligence Group
Instituto Superior Técnico
Lisbon 1049-001, Portugal
pedrod@gia.ist.utl.pt
http://www.gia.ist.utl.pt/~pedrod

Abstract

Research in machine learning, statistics and related fields
has produced a wide variety of algorithms for classification.
However, most of these algorithms assume that all errors
have the same cost, which is seldom the case in KDD prob-
lems. Individually making each classification learner cost-
sensitive is laborious, and often non-trivial. In this paper we
propose a principled method for making an arbitrary classi-
fier cost-sensitive by wrapping a cost-minimizing procedure
around it. This procedure, called MetaCost, treats the un-
derlying classifier as a black box, requiring no knowledge of
its functioning or change to it. Unlike stratification, Meta-
Cost is applicable to any number of classes and to arbitrary
cost matrices. Empirical trials on a large suite of benchmark
databases show that MetaCost almost always produces large
cost reductions compared to the cost-blind classifier used
(C4.5RULES) and to two forms of stratification. Further
tests identify the key components of MetaCost and those
that can be varied without substantial loss. Experiments on
a larger database indicate that MetaCost scales well.

1 Introduction

Classification is one of the primary tasks of data
mining [18]. It has also been a subject of research in
machine learning, statistics, pattern recognition, neural
networks and other areas for several decades. As
a result, many well-developed approaches to it now
exist, including rule induction [20, 12], decision tree
induction [8, 23], instance-based learning [11, 1], linear
and neural classifiers [3], Bayesian learning [17, 16],
and others. In classification problems, the goal is to
correctly assign examples (typically described as vectors
of attributes) to one of a finite number of classes. Most
of the currently-available algorithms for classification
are designed to minimize zero-one loss or error rate: the
number of incorrect predictions made or, equivalently,

the probability of making an incorrect prediction. This
implicitly assumes that all errors are equally costly, but
in most KDD applications this is far from the case. For
example, in database marketing the cost of mailing to a
non-respondent is very small, but the cost of not mailing
to someone who would respond is the entire profit lost.
In general, misclassification costs may be described by
an arbitrary cost matrix C, with C(i,j) being the cost
of predicting that an example belongs to class ¢ when
in fact it belongs to class j. The realization that in
real-world applications non-uniform costs are the rule
rather than the exception has led in recent years to
an increased interest in algorithms for cost-sensitive
classification. (Some of these will be discussed in the
section on related work; Turney [25] provides an online
bibliography on the topic.) Substantial work has gone
into making individual algorithms cost-sensitive. Doing
this for all algorithms available in the literature would
be a very time-consuming enterprise, and often it is
far from obvious how best to perform the conversion.
A potentially better solution would be to have a
procedure that converted a broad variety of error-based
classifiers into cost-sensitive ones. To our knowledge,
the only currently available procedure of this type
is stratification—changing the frequency of classes in
the training data in proportion to their cost [8, 9,
22]. However, this approach has several shortcomings.
It distorts the distribution of examples, which may
seriously affect the performance of some algorithms. It
reduces the data available for learning, if stratification
is carried out by undersampling. It increases learning
time, if it is done by oversampling. Most seriously,
it is only applicable to two-class problems and to
multiclass problems with a particular type of cost
matrix, one where C(i,7) C(j) (i-e., where the
cost of misclassifying an example is independent of the
predicted class).

In this paper we propose a new procedure for cost-
sensitive classification that attenuates or eliminates
the disadvantages of stratification. This procedure,
called MetaCost, is based on wrapping a “meta-
learning” stage around the error-based classifier in such

a way that the classifier effectively minimizes cost
while seeking to minimize zero-one loss. The next
section describes in detail MetaCost and the reasoning
leading to it. The following section describes an
extensive empirical evaluation of MetaCost, where it is
compared with stratification and where its properties,
in particular its scalability, are investigated. The
paper concludes with a discussion of related research,
directions for future work, and a summary of results.

2 The MetaCost Algorithm

In order to obtain a procedure for making error-based
classifiers cost-sensitive, let us start with some basic
notions. If, for a given example x, we know the
probability of each class j P(j|z), the Bayes optimal
prediction for z is the class ¢ that minimizes the
conditional risk [17]:

R(ilx) = ZP(jlw)C(i,j) (1)

The conditional risk R(i|z) is the expected cost of
predicting that x belongs to class ¢. The Bayes optimal
prediction is guaranteed to achieve the lowest possible
overall cost (i.e., the lowest expected cost over all
possible examples z, weighted by their probabilities
P(z)). C(i,j) and P(j|z) together with the rule
above imply a partition of the example space X into
j (possibly nonconvex) regions, such that class j is the
optimal (least-cost) prediction in region j. The goal
of cost-sensitive classification is to find the frontiers
between these regions, explicitly or implicitly. This is
complicated by their dependence on the cost matrix C:
in general, as misclassifying examples of class j becomes
more expensive relative to misclassifying others, the
region where j should be predicted will expand at
the expense of the regions of other classes, even if
the class probabilities P(j|z) remain unchanged. In
fact, we do not know what the optimal predictions are
even for the pre-classified examples in the training set;
depending on the cost matrix, they may or may not
coincide with the classes that the examples are labeled
with. If the examples in the training set were relabeled
with their optimal classes according to the cost matrix
given, an error-based classifier could be applied to learn
the optimal frontiers, because the examples would now
be labeled according to those frontiers. In the large-
sample limit, a consistent error-based learner would
learn the optimal, cost-minimizing frontiers. With a
finite sample, the learner should in principle do no
worse at finding these frontiers than it would at finding
the optimal zero-one loss frontiers given the original
training set.

The MetaCost procedure is based on this idea.
In order to relabel the training examples with their
“optimal” classes, we need to find a way to estimate

their class probabilities P(j|z). Note that this is
different from finding class probabilities for unseen
examples, and that the quality of these estimates
is important only insofar as it influences the final
frontiers produced; probability estimates can be quite
poor and still lead to optimal classification, as long
as the class that minimizes conditional risk given the
estimated probabilities is the same that minimizes it
given the true ones [16]. One possibility would be to
use standard probability estimation techniques, such
as kernel density estimation [17]. However, successful
learning of a cost-sensitive classifier using this approach
would require that the machine learning bias (i.e.,
the implicit assumptions) of both the classifier and
the probability estimator be valid for the application
domain. Strictly speaking, this is impossible unless
the classifier and the density estimator are the same,
and a mismatch between probability estimation and
classification stages has indeed been found to hurt
performance in a context similar to the present one
([13]; see also related work section below). For example,
decision tree and rule inducers are some of the most
effective learners for very-high-dimensional domains like
those often found in KDD, but these are precisely those
domains were commonly-used probability estimation
techniques like kernel densities and mixture models
are least effective. Our assumption here will be that
the user has chosen a particular classifier because its
characteristics are well suited to the domain, and that
we should therefore also use that classifier and no other.

Many classifiers yield class probability estimates as a
by-product of learning, but these are often very poor.
For example, most decision tree and rule learners work
by attempting to drive class probabilities to zero or one
within each leaf or rule, and the resulting estimates are
correspondingly off [7]. Because of this, and because
some classifiers may not produce class probabilities,
MetaCost allows their use, but does not require it.
A more robust and generally-applicable method for
obtaining class probability estimates from a classifier
is suggested by recent research on model ensembles
[10, 14]. Many authors (e.g, Breiman [5]) have found
that most modern learners are highly unstable, in that
applying them to slightly different training sets tends
to produce very different models and correspondingly
different predictions for the same examples, while the
overall accuracy remains broadly unchanged. This
accuracy can be much improved by learning several
models in this way (or using other variations) and then
combining their predictions, for example by voting.
Thus MetaCost estimates class probabilities by learning
multiple classifiers and, for each example, using each
class’s fraction of the total vote as an estimate of its
probability given the example. (Not all learners are
unstable in the fashion described; methods for applying

MetaCost to such learners are discussed in the section
on future work.) Specifically, MetaCost uses a variant
of Breiman’s [5] bagging as the ensemble method. In
the bagging procedure, given a training set of size s, a
“bootstrap” resample of it is constructed by taking s
samples with replacement from the training set. Thus
a new training set of the same size is produced, where
each of the original examples may appear once, more
than once, or not at all. This procedure is repeated
m times, and the resulting m models are aggregated
by uniform voting (i.e., when an unclassified example is
presented, the ensemble labels it with the class that is
predicted by the greatest number of models). MetaCost
differs from bagging in that the number n of examples
in each resample may be smaller than the training
set size s. This allows it to be more efficient. If
the classifier being used produces class probabilities,
a class’s vote is estimated as the unweighted average
of its probabilities given the models and the example.
Also, when estimating class probabilities for a given
training example z, MetaCost allows taking all the
models generated into consideration, or only those
that were learned on resamples the example was not
included in. The first type of estimate is likely to
have lower variance, because it is based on a larger
number of samples, while the second is likely to have
lower statistical bias, because it is not influenced by
the example’s own class in the training set.

In short, MetaCost works by: forming multiple
bootstrap replicates of the training set, and learning
a classifier on each; estimating each class’s probability
for each example by the fraction of votes that it receives
from the ensemble; using Equation 1 to relabel each
training example with the estimated optimal class; and
reapplying the classifier to the relabeled training set.
Pseudo-code for the MetaCost procedure is shown in
Table 1. Note that, if the cost matrix changes, only
the final learning stage needs to be repeated, and this
is equivalent to a single run of the error-based classifier.

3 Empirical Evaluation

The question of whether MetaCost reduces cost com-
pared to the error-based classifier and to stratification
was studied empirically using 28 benchmark databas-
es from the UCI repository [4]. The C4.5 decision tree
learner [23] was used as the error-based classifier be-
cause of its de facto role as a standard for empirical
comparisons. The C4.5RULES post-processor, which
converts C4.5’s decision trees to sets of “IF ... THEN
...”7 rules, was also used, since it tends to improve accu-
racy and produces simpler, more comprehensible results
[23]. In what follows, the C4.5-C4.5RULES combina-
tion will be referred to by the abbreviation “C4.5R.”
Except where noted, all experiments were carried out by
randomly selecting 2/3 of the examples in the database

Table 1: The MetaCost algorithm.

Inputs:

is the training set,

is a classification learning algorithm,

is a cost matrix,

is the number of resamples to generate,

is the number of examples in each resample,
is True iff L produces class probabilities,

is True iff all resamples are to be used for
each example.

QRS I QNW;

Procedure MetaCost (S, L, C,m,n,p,q)

Fori=1tom
Let S; be a resample of S with n examples.
Let M; = Model produced by applying L to S;.

For each example z in S
For each class j

Let P(jlz) = ﬁZP(J’W:Mi)

Where
If p then P(j|z, M;) is produced by M;
Else P(j|z, M;) = 1 for the class predicted
by M; for x, and 0 for all others.
If ¢ then ¢ ranges over all M;
Else i ranges over all M; such that ¢ S;.
Let z’s class = argmin; ZP(j|a:)C(i,j).
j

Let M = Model produced by applying L to S.

Return M.

for training the classifiers, and using the remaining 1/3
for measuring the cost of their predictions. The results
reported are the average of 20 such runs. We first report
the results of experiments on 15 multiclass databas-
es, followed by experiments on 12 two-class databas-
es. Lesion studies and a scaling-up study using a larger
database complete this section.

3.1 Multiclass Problems

Experiments were conducted with two different types
of cost model. In the first, each C(4,7) was chosen
at random from a uniform distribution in the [0, 1000]
interval, and each C(i,j) for 4 # j was chosen at
random from the fixed interval [0,10000]. Different
costs were generated for each of the 20 runs conducted
on each database; thus the standard deviations reported
incorporate the effects of varying the cost matrix. In the
second experiment, each C(i,7) was chosen as before,

Table 2: Average costs and their standard deviations for multiclass problems.

Database Costs from fixed interval Costs from class-prob.-dependent interval
C4.5R Underspl Overspl MetaCost C4.5R Underspl Overspl MetaCost
Annealing 1061+£23 1076118 989+20 984424 1258489 711444 1027453 46+3
Audiology 1842490 2008+81 1569+83 1769+78 | 2264+195 609+124 1833+145 17+10
Glass 1986481 1856+102 1786490 1217+64 1169492 548136 1052+86 221+10
Iris 652+30 618+26 641425 513+16 470+22 454+18 469420 345+20
LED 2016192 2181+78 1897+81 1484467 835+44 814452 727+21 393+£16
Lenses 1624+132 1687+159 1596+167 1515+110 | 1171£264 910+218 9724115 192418
Lung cancer | 2363+261 1714+148 1957+263 1577+144 969+135 624+74 10134146 370+39
Lymphogr. | 1055450 1000+52 970457 721+£33 | 1118+110 489486 10544111 60+5
Post-oper. 1239+152 68631 1614491 666+31 23224230 841+112 2016+151 8349
Pr. tumor 3475188 3478+123 3759198 3446+L87 3193+£338 936+£117 16914117 17+7
Solar flare 1602488 1430+94 1425179 875143 1342498 542466 99670 133+7
Soybean 716135 718444 739146 873191 682+33 632437 685+35 283126
Splice 659112 602+13 715410 556+11 412+12 42449 419411 34244
Wine 685424 647+33 670129 558+25 461+18 475+13 455+14 264+13
Zoology 1148+103 1153+105 857+49 873166 624+85 650+108 540+62 169+14

but C(%,7) was chosen with uniform probability from
the interval [0, 2000 P(%)/P(j)], where P(i) and P(j)
are the probabilities of occurrence of classes i and j
in the training set. Thus the expected value of C(%, j)
was 1000 P(i)/P(j). This means that the highest costs
are for misclassifying a rare class as a frequent one,
and inversely for the lowest. This mimics the situation
often found in practice (e.g., in the database marketing
domains mentioned before) where the rarest classes are
the ones that it is most important to identify correctly.
When this is the case, a low error rate can be achieved
simply by ignoring the minority classes, but the cost
will be high. Cost-sensitive learning is thus particularly
important in these problems. As before, a different cost
matrix was generated for each run.

Since stratification cannot be directly applied to
arbitrary multiclass cost matrices, we followed Breiman
et al.’s [8] suggestion of making C(j) = >, C(ij),
where C(j) is the cost of misclassifying an example of
class j, irrespective of the class predicted. The training
set was then resampled so as to make each class’s
probability equal to P'(j) = C(j)P(5)/ >2; C(5)P(3)-
(See [8, pp. 112-115] for a detailed justification
of this procedure.) This was done in two different
ways: by undersampling and by oversampling. In
the undersampling procedure, all examples of the class
j with highest P’(j) are retained, and a fraction
P'(i)/P'(j) of the examples of each other class i is
chosen at random for inclusion in the resampled training
set. Although this is probably the most frequently used
type of cost-based stratification, it has the disadvantage
of reducing the data available for learning, which may
increase cost. Thus oversampling is sometimes used
instead. In this alternative, all examples of the class

j with lowest P'(j) are retained, and then the examples
of every other class ¢ are duplicated approximately
P'(i)/P'(j) times in the training set. This avoids the
loss of training data, but may significantly increase
learning time, particularly for superlinear algorithms.

MetaCost was applied considering for each example
only the models it was not used to train, using C4.5R’s
rule class probabilities, and generating 50 resamples,
each of size equal to the original training set’s (i.e., ¢ =
False, p = True, m = 50 and n = s in Table 1). The
results obtained are shown in Table 2, and graphically
in Figure 1. (Results obtained using other variants
of MetaCost are reported in the section on lesion
studies.) In the fixed-interval case, neither form of
stratification is very effective in reducing costs, which
is perhaps not surprising given that the approximations
made in order to apply them are far from true. In
contrast, MetaCost reduces costs compared to C4.5R
and undersampling in all but one database, and
compared to oversampling in all but three. In the
probability-dependent case, which more closely matches
the assumptions used to apply stratification, both
undersampling and oversampling reduce cost compared
to C4.5R in 12 of the 15 databases. MetaCost does
better, achieving lower costs than C4.5R and both
forms of stratification in all 15 databases. Globally, the
average cost reduction obtained by MetaCost compared
to C4.5R is approximately twice as large as that
obtained by undersampling, and five times that of
oversampling. In both sets of experiments, the costs
obtained by MetaCost are lower than those of each of
the other three algorithms with confidences exceeding
99% using sign and Wilcoxon tests. These results
support the conclusion that MetaCost is the cost-

3500
3000 1
2500 . B
o 2000 | . .]
o 2
~ o o -
O 1500 | g T
1000 [° . o e]
Gt T Multiclass
o T x ol Two-class +
500 [ot 3 ft—*’*# wo-C 1
+ ,‘tv#"#“ y=X 7777777777
0L ‘ ‘ ‘
0 3000 600 900 1200 1500 1800
MetaCost
2500
2000 r <>
[@)] 6O -
g 1500 | . P
o} ° .
e 1000 . o 1
2 ° ° tJ:#o
AT o Multiclass
500 fe® Te g Two-class -]
+IHH y=xX o
oLk ‘ ‘ ‘ ‘
0 300 600 900 1200 1500 1800
MetaCost
2500
2000 r ° L . ° 1
% 1500) P
g 1000 (€007 e T |
L0 T T Multidass -
500 ¢ Mt Two-class -]
Lt y=xX

900 1200 1500 1800
MetaCost

0 300 600

Figure 1: Comparison of MetaCost’s costs (z axis) with
those of C4.5R, undersampling and oversampling (y
axes). Each point corresponds to a database and type
of cost matrix. Points above the y = x line are those
where MetaCost outperformed the alternative classifier.

reduction method of choice for multiclass problems.

3.2 Two-Class Problems

In two-class problems where C(1,1) = C(2,2) = 0,
stratification can be applied without any approximation
by making C(1) = C(2,1), C(2) = C(1,2) and
proceeding as before. Letting 1 be the minority class
and 2 the majority class, experiments on two-class
databases were conducted using the following cost
model: C(1,1) = C(2,2) = 0; C(1,2) = 1000; C(2,1) =
1000 r, where r was set alternately to 2, 5, and 10.
Note that the absolute values of C(2,1) and C(1,2)
are irrelevant for algorithm comparison purposes; only
their ratio r is significant. The results obtained, using
the same settings for MetaCost as before, are shown
in Table 3, and graphically in Figure 1. Oversampling
is not very effective in reducing cost with any of the
cost ratios. Undersampling is effective for »r = 5 and
r = 10, but not for r = 2. MetaCost reduces costs
compared to C4.5R, undersampling and oversampling
on almost all databases, for all cost ratios. In all cases,
the costs obtained by MetaCost are lower than those
of each of the other three algorithms with confidences
exceeding 99% using sign and Wilcoxon tests (except
for the sign test for undersampling with r = 10,
where the confidence is 98%). These results support
the conclusion that MetaCost is the cost-reduction
method of choice even for two-class problems where
stratification can be applied without approximation.

3.3 Lesion Studies

Several questions arise in connection with MetaCost’s
results. How sensitive are they to the number of
resamples used? Would it be enough to simply use
the class probabilities produced by a single run of the
error-based classifier on the full training set? Would
MetaCost perform better if all models were used in
relabeling an example, irrespective of whether the
example was used to learn them or not? And how well
would MetaCost do if the class probabilities produced
by C4.5R were ignored, and the probability of a class
was estimated simply as the fraction of models that
predicted it? This section answers these questions by
carrying out the relevant experiments. For the sake
of space, only results on the two-class databases are
presented; the results on multiclass databases were
broadly similar. Table 4 reports the results obtained
for » = 2, 5 and 10 by the following variations of
MetaCost: using 20 and 10 resamples instead of 50
(labeled “m=20” and “m=10"); relabeling the training
examples using the class probabilities produced by
a single run of C4.5R on all the data (labeled “C4
Probs”); ignoring the class probabilities produced by
C4.5R (labeled “0-1 Votes”); and using all models in
relabeling an example (labeled “All Ms”). In each case,

Table 3: Average costs and their standard deviations for two-class problems.

Cost ratio | Database C4.5R Underspl Overspl MetaCost

Breast cancer 505425 509+14 577123 511420
Credit 239+11 218+8 247+10 18747
Diabetes 404+£12 386+10 395+8 335+7
Echocardiogram | 590423 514421 549422 497422
Heart disease 323+15 328+11 350+15 304+10

2 Hepatitis 346+24 327+21 337421 326+25
Horse colic 244410 273+14 275+13 24448
Labor 226+35 308+33 245+35 247424
Liver disease 593+24 540415 503+18 548+16
Promoters 340+29 306430 316+35 296+16
Sonar 484425 442421 472433 439421
Voting 65+7 67+5 71+6 5944
Breast cancer 1078170 821437 1130+£57 688421
Credit 491428 306+15 557+24 282411
Diabetes 824+34 556+20 727421 480+13
Echocardiogram | 1244+65 727+43 1068+67 688+23
Heart disease 632143 466+23 700437 416+22

5 Hepatitis 741160 517+47 628+54 503440
Horse colic 520+24 510+31 531+31 415424
Labor 463+89 579+48 484454 539435
Liver disease 1268+75 625+22 1054+46 616+13
Promoters 743169 449440 829+102 409432
Sonar 1019+66 654+49 1001£57 517+23
Voting 123418 89+9 106+13 7616
Breast cancer 2034+148 792437 2039498 711+16
Credit 911457 481+29 1039453 396+13
Diabetes 1524472 684+24 1326+63 549415
Echocardiogram | 2335+£137 856+60 1945+151 668+16
Heart disease 1147490 567+40 1209+83 576+17

10 Hepatitis 14004123 770462 1190+110 721451
Horse colic 979+50 638+17 946 £57 617+16
Labor 858+£179 671422 858+95 674+34
Liver disease 2393+£162 671+£33 1883+103 580+£13
Promoters 14144138 436+12 1634+173 506+52
Sonar 1910+£138 74069 1799+132 498420
Voting 220+37 132416 168427 11848

all other settings are those used in the previous sections.
Some of the main observations that can be made by
comparing Table 4 with Table 3 are:

e In the m = 50 to m = 10 range, cost increases
as the number of resamples decreases, but only
very gradually. In particular, there is no significant
difference between the costs obtained with m = 50
and m = 20, for all costs ratios, and with m = 10
MetaCost still reduces costs compared to C4.5R and
both forms of stratification in almost all datasets, for
all cost ratios.

e However, using multiple runs to estimate class
probabilities is essential. Using a single run on

all the data produces worse results than MetaCost
and undersampling in almost all datasets for all
cost ratios (except that it performs similarly to
undersampling for » = 2). It still outperforms
oversampling and C4.5R.

Ignoring C4.5R’s class probabilities increases cost
in a majority of the datasets, but the relative
differences are generally minor. MetaCost in this
form still outperforms C4.5R and both types of
stratification in a large majority of the datasets, for
all cost ratios.

Using all models decreases cost for r = 10 but
increases it for r = 5 and r = 2. In all three

Table 4: Average costs and their standard deviations for different versions of MetaCost.

Cost ratio | Database m=20 m=10 C4 Probs 0-1 Votes All Ms
Breast cancer 514418 506£25 498+22 495+19 519£19
Credit 188+7 196+6 227+9 202+8 19347
Diabetes 343+7 348+8 390+9 357+8 355+8
Echocardiogram | 477+20 460+20 542420 507+£26 547425
Heart disease 292412 306%10 320+14 308+12 300+11
2 Hepatitis 330+24 333+25 337+22 317+22 336+21
Horse colic 247+9 258+10 255+10 237+8 255+10
Labor 213429 300435 242433 2664+29 208426
Liver disease 535+11 553417 566+16 537+13 546+19
Promoters 31025 337+20 327445 357+31 330+30
Sonar 436+24 449426 451425 469+18 429+18
Voting 58+5H 65+4 64+6 5944 6015
Breast cancer T12+24 732427 823+45 809+41 T719+25
Credit 277+12 289+12 331+20 287+14 286+11
Diabetes 477+10 511+£13 60027 490+11 499+11
Echocardiogram | 699+31 684+32 876+55 791+47 730+32
Heart disease 418420 442+21 514442 404+20 431+24
5 Hepatitis 546+29 551430 640+55 579+48 513+34
Horse colic 405+£23 41717 530426 446+28 453420
Labor 582451 542+44 484+64 403+54 534+50
Liver disease 613+14 646120 751433 707+29 628+16
Promoters 473+40 456+46 569190 491441 357+25
Sonar 556+£31 638138 834+59 608+£37 552+41
Voting 76+6 79+6 86+9 9246 7316
Breast cancer 733117 707£25 765+49 981+44 700+19
Credit 412414 403+21 514435 427422 400+16
Diabetes 556+15 577+16 688+33 623+21 551+10
Echocardiogram | 664+15 67817 986192 884+53 670£15
Heart disease 560+26 576+22 596+43 514439 529+£15
10 Hepatitis 667+38 710+60 9421497 709464 675+49
Horse colic 643+14 615+18 73037 585+53 596113
Labor 666£29 718146 682+72 645+£82 634+31
Liver disease 580+13 628+30 847+48 673+30 580£13
Promoters 531491 429419 686191 573+58 446+13
Sonar 540+26 590429 947+88 617+£53 490+20
Voting 10511 106x10 10613 11849 106+10

cases the relative differences are generally minor,

the error-based classifier.

In the databases used in

and the performance vs. C4.5R and stratification
is generally similar.

To summarize, the one crucial element of MetaCost is
the use of multiple runs to estimate class probabilities,
but a number of runs as low as 10 is sufficient
for excellent performance. The use of the error-
based learner’s class probabilities is beneficial but not
critical, as is estimating an example’s class probabilities
excluding the models it was used to learn.

3.4 Scaling Up

An obvious potential disadvantage of MetaCost as used
so far is that it increases learning time compared to

the previous sections, where all learning times are on
the order of seconds or fractions of a second, this
is arguably immaterial. But in larger databases this
might become a serious limitation. Although MetaCost
only increases time by a fixed factor (the number
of resamples, approximately) and so its asymptotic
time complexity is of the same order as the error-
based classifier’s, the increased constant may be critical
in large-scale applications. One solution lies in the
fact that, since the multiple runs of the error-based
classifier required to form the probability estimates
are completely independent of each other, they can be
trivially parallelized, reducing the time increase factor

Table 5: Costs and CPU times (in minutes and seconds)
of C4.5R, oversampling and six variants of MetaCost on
the shuttle database.

Algorithm No Noise 10% Noise
Cost Time Cost Time
C4.5R 15.6 1:41 | 2591.2 91:56

Undersampling 159 0:01 | 2325 140
m =10, n = {5 0.6 1:44 524 4:18
m =10, n = 7% 0.7 0:15 53.2 0:17

m=20,n = %00 0.6 243 - -
m =20,n = {5 0.6 1:51 52.5 8:18
m=50,n=s 0.6 28:49 - -
m =50, n = {5 0.6 2:38 52.5 21:35

to about two. But a potential solution that does not
require parallel processing is to use resamples that
are smaller than the original training set (in addition
to using a relatively small number of resamples, for
example 10). Smaller resamples may result in higher
costs, but conceivably still lower than those obtained
with the error-based learner or with stratification, and
therefore still worthwhile. Further, the increase in cost
caused by learning the class probabilities on smaller
samples may be offset or exceeded by the reduction
obtained by the use of multiple models. Indeed,
this idea is behind Breiman’s [6] successful “pasting”
method for scaling up learners. At the same time,
reducing resample sizes will reduce running time, by
a factor that will be particularly significant if the error-
based learner used has superlinear running time. For
example, if the classifier’s running time is quadratic in
the number of examples, using a tenth of the examples
will reduce running time for each resample by a factor
of 100. If 10 resamples are used, this will make the
CPU time of the probability estimation phase an order
of magnitude smaller than that of a single run of the
error-based classifier on all the data, and therefore
insignificant.

To test whether this approach is feasible, experiments
were carried out using the largest database available
in the UCI repository: shuttle [4]. The goal in this
database is to diagnose the state of the space shuttle’s
radiators from a set of sensor readings. This problem is
well suited for testing cost-sensitive algorithms, because
there is a large majority of one class (the “normal”
state) and it is easy to obtain very low error rates
[12], but presumably the cost of missing one of the rare
anomalous states is potentially much higher than that
of a false alarm, making error rate an inappropriate
measure of performance.

There are seven possible states, and nine numeric
readings. The database contains 43500 examples from
one shuttle flight and 14500 from another. The first

flight was used for training, and the second for testing.
All runs were carried out on a 300 MHz Pentium
computer. Costs were set to C(i,i) = 0 for all i,
and to C(i,7) = 1000 P(i)/P(j) for all i # j. It was
not possible to obtain results for oversampling because
C4.5R running on the expanded training set exceeded
the available memory. (Judging from the results in the
previous sections, there is a high probability it would
do worse than undersampling.) Table 5 shows the
costs and running times for C4.5R, oversampling, and
MetaCost with several combinations of m (number of
resamples) and n (resample size, as a function of the
training set size s). As before, MetaCost was used with
p = True and g = False (see Table 1). Undersampling
is fast, but it does not reduce cost. MetaCost with 10
resamples each one tenth the size of the original training
set reduces cost by over an order of magnitude, and its
running time is very similar to C4.5R’s. Increasing the
number of resamples and the resample sizes predictably
increases running time, but does not further reduce
cost. Reducing resample size to 1/100 of the training
set size increases cost by 17%.

The poor results obtained by undersampling suggest
that MetaCost’s excellent performance is not just due
to the problem being “easy,” requiring only a small
number of examples to achieve low costs. However,
as a further check we repeated the experiment with
10% class noise added to training and test sets (i.e.,
with 10% probability an example’s class was changed
to a different one, with all classes having the same
probability of being the new one). The results are also
shown in Table 5. Costs and running times are now
much higher for all algorithms, and undersampling is
now effective at reducing C4.5R’s cost, but MetaCost is
again by far the best performer. As before, increasing
m above 10 produces no significant improvements. (For
n = % and n = s C4.5R exceeded the available
memory.) Remarkably, MetaCost with m = 10 and
n = 1y is over an order of magnitude faster than C4.5R,
while reducing cost by over an order of magnitude.
This result, which may appear surprising at first, is
due to the fact that estimating class probabilities by
averaging several models learned on small subsamples
has the effect of filtering out noise, producing a cleaner
dataset, on which C4.5R runs much faster than on
the original one. Examining the algorithms’ output
shows that MetaCost induces a single short rule for
each anomalous state and makes the normal state
the default, while C4.5R’s output is over an order of
magnitude larger. C4.5R is known to be inefficient
on large noisy databases [12], so these results may
not generalize to other error-based learners. However,
although preliminary, they are a strong indication that
MetaCost can be applied effectively to large databases,
reducing cost without significantly increasing running

time. They also suggest that in noisy databases
MetaCost may additionally be useful as a method for
speeding up learning.

4 Related Work

Cost-sensitive learning is the subject of a burgeoning
literature, which space does not allow us to review here.
We point the reader to [15] for a brief review, and to
[25] for an online bibliography. This section discusses
those elements of previous research that are most closely
related to MetaCost.

Chan and Stolfo [9] have proposed a variation of
stratification that involves learning multiple classifiers
on stratified subsamples of the database, which are then
combined by a classifier that uses the others’ outputs
as inputs. This method does not produce a single
model, and thus its output is hard to understand, while
MetaCost produces a single model of similar complexity
to that of the error-based classifier. Compared to
stratification by undersampling, Chan and Stolfo’s [9]
method avoids the loss of training data, but is also only
applicable (in its present form) to two-class problems. It
is more ad hoc than stratification, lacking large-sample
guarantees or clear foundations for its resampling
scheme. Unlike MetaCost, it requires repeating all runs
every time the cost matrix changes. It has only been
tested in a single domain (credit-card fraud detection).

Ting and Zheng [24] have proposed a cost-sensitive
variant of boosting (an ensemble method) for decision
trees. It is significant here because it should be
easily adaptable to other error-based learners, and like
MetaCost creates a cost-sensitive learner from multiple
runs of an error-based one. However, like Chan
and Stolfo’s [9] method, it does not produce a single
comprehensible model. Compared to regular boosting,
it is also more ad hoc, lacking its guarantees of near-
optimal performance on the training data. It requires
repeating all runs every time the cost matrix changes.
Based on published results, it appears to produce
substantially smaller cost reductions than MetaCost.

MetaCost’s architecture is in some respects similar
to that of CMM [13], a meta-learner that combines
multiple models into a single one. While MetaCost’s
goal is to reduce costs, CMM’s goal is to increase
comprehensibility, while retaining some of the accuracy
gains of multiple models. MetaCost uses the model
ensemble to relabel training examples, while CMM uses
it to label additional artificially-generated examples. A
combination of the two may conceivably bring together
the advantages of both.

5 Future Work

One item for future work is to carry out experiments
on additional large databases, and using other error-

based learners besides C4.5R. Of particular interest
would be to apply MetaCost to algorithms that are not
unstable with respect to variations in the training set,
like k-nearest neighbor [11] and naive Bayes [16]. In its
present form, MetaCost may not be very effective with
these algorithms, but an alternative is readily suggested
by the results of [2] and [26]. Their method consists of
learning multiple models using different subsets of the
attributes, instead of different subsets of the examples.
K-nearest neighbor and naive Bayes are unstable with
respect to changes in the attributes used, and this
method was indeed found to reduce those algorithms’
errors to an extent similar to bagging’s with other
learners. It is readily incorporated into MetaCost.

The application of MetaCost to large databases may
be improved by stratifying the subsamples used, and /or
by using partitioning instead of bagging. This would
be similar to the first phase of Chan and Stolfo’s [9]
method, and might avoid losing useful information in
some of the resamples. It might be necessary, however,
to correct the probability estimates obtained for the
effects of stratification.

An interesting comparison that has not yet been per-
formed is to use an “off-the-shelf” probability estimator
(e.g., kernel densities) for the first phase of MetaCost
instead of multiple runs of the error-based classifier. Al-
though unlikely to be generally useful, given previous
results [13], this may be successful for some domains and
some combinations of probability estimator and classi-
fier. More generally, the effect on MetaCost’s perfor-
mance of the quality of the probability estimates used
needs to be investigated. This is best done using syn-
thetic data, for which we know the true class probabili-
ties for every example. It would also be interesting to do
an ROC analysis of MetaCost, by varying the probabil-
ity thresholds at which an example’s relabeling changes
from one class to another [21].

The current version of MetaCost is based on bagging.
An alternative method for constructing model ensem-
bles is boosting [19]. Boosting often achieves lower er-
ror rates than bagging, and using it in MetaCost might
produce corresponding reductions in cost.

6 Conclusion

KDD applications have often been hindered by the
lack of powerful cost-sensitive learners. Converting
individual error-based learners into cost-sensitive ones
is a tedious and sometimes difficult process, but the
general-purpose alternative of stratification is of limited
applicability, and has a number of other disadvantages.
In this paper we proposed and evaluated MetaCost, a
new procedure for making error-based classifiers cost-
sensitive. MetaCost is based on relabeling training
examples with their estimated minimal-cost classes, and
applying the error-based learner to the new training

set.

Experiments show that MetaCost systematically

reduces cost compared to error-based classification and
to stratification, often by large amounts, and that
MetaCost can be efficiently applied to large databases.

Acknowledgements
This research was partly funded by the PRAXIS XXI

program.

The author is grateful to all those who

provided the datasets used in the empirical study.

References

[1]

2]

3]

[4]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

D. W. Aha, D. Kibler, and M. K. Albert. Instance-
based learning algorithms. Machine Learning,
6:37-66, 1991.

S. D. Bay. Combining nearest neighbor classifiers
through multiple feature subsets. Proc. 17th Intl.
Conf. on Machine Learning, pp. 37-45, Madison,
WI, 1998.

C. M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, Oxford, UK,
1995.

C. Blake, E. Keogh, and C. J. Merz. UCI repository
of machine learning databases. Dept. of Informa-
tion and Computer Science, University of Califor-
nia at Irvine, CA, 1999. http://www.ics.uci.edu/-
~mlearn/MLRepository.html.

L. Breiman. Bagging predictors. Machine Learn-
ing, 24:123-140, 1996.

L. Breiman. Pasting bites together for prediction
in large data sets and on-line. Technical report,
Statistics Dept., University of California at Berke-
ley, CA, 1996.

L. Breiman. Out-of-bag estimation. Technical
report, Statistics Dept., University of California at
Berkeley, CA, 1998.

L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

P. Chan and S. Stolfo. Toward scalable learning
with non-uniform class and cost distributions.
Proc. 4th Intl. Conf. on Knowledge Discovery and
Data Mining, pp. 164-168, New York, NY, 1998.

P. Chan, S. Stolfo, and D. Wolpert, editors. Proc.
AAAI-96 Wkshp. on Integrating Multiple Learned
Models for Improving and Scaling Machine Learn-
ing Algorithms. AAAT Press, Portland, OR, 1996.

B. W. Dasarathy, editor. Nearest Neighbor (NN)
Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamitos, CA,
1991.

P. Domingos. Linear-time rule induction. Proc.

2nd Intl. Conf. on Knowledge Discovery and Data
Mining, pp- 96-101, Portland, OR, 1996.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

P. Domingos. Knowledge acquisition from exam-
ples via multiple models. Proc. 14th Intl. Conf.
on Machine Learning, pp. 98-106, Nashville, TN,
1997.

P. Domingos. Why does bagging work? A Bayesian
account and its implications. Proc. 3rd Intl. Conf.
on Knowledge Discovery and Data Mining, pp.
155-158, Newport Beach, CA, 1997.

P. Domingos. How to get a free lunch: A simple
cost model for machine learning applications. Proc.
AAAI-98/ICML-98 Wkshp. on the Methodology of
Applying Machine Learning, pp. 1-7, Madison,
WI, 1998.

P. Domingos and M. Pazzani. On the optimality of
the simple Bayesian classifier under zero-one loss.
Machine Learning, 29:103-130, 1997.

R. O. Duda and P. E. Hart. Pattern Classification
and Scene Analysis. Wiley, New York, NY, 1973.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
From data mining to knowledge discovery: An
overview. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pp. 1-
34. AAAI Press, Menlo Park, CA, 1996.

Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. Proc. 13th Intl. Conf. on
Machine Learning, pp. 148-156, Bari, Italy, 1996.

R. S. Michalski. A theory and methodology of
inductive learning. Artificial Intelligence, 20:111—
161, 1983.

F. Provost and T. Fawcett. Analysis and visual-
ization of classifier performance. Proc. 3rd Intl.
Conf. on Knowledge Discovery and Data Mining,
pp- 43-48, Newport Beach, CA, 1997.

F. Provost, T. Fawcett, and R. Kohavi. The
case against accuracy estimation for comparing
induction algorithms. Proc. 15th Intl. Conf. on
Machine Learning, pp. 445-453, Madison, WI,
1998.

J. R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA,
1993.

K. M. Ting and Z. Zheng. Boosting trees for cost-
sensitive classifications. Proc. 10th European Conf.
on Machine Learning, pp. 191-195, Chemnitz,
Germany, 1998.

P. Turney. Cost-sensitive learning bibliogra-
phy. Online bibliography, Institute for Informa-
tion Technology of the National Research Coun-
cil of Canada, Ottawa, Canada, 1997. http://-
ai.iit.nrc.ca/bibliographies/cost-sensitive.html.

Z. Zheng. Naive Bayesian classifier committees.
Proc. 10th European Conf. on Machine Learning,
pp. 196-207, Chemnitz, Germany, 1998.

