
On Integrating Network and Community Discovery

Jialu Liu
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
jliu64@illinois.edu

Charu Aggarwal
IBM T. J. Watson Research

Center
Yorktown, NY, USA

charu@us.ibm.com

Jiawei Han
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
hanj@illinois.edu

ABSTRACT

The problem of community detection has recently been stud-
ied widely in the context of the web and social media net-
works. Most algorithms for community detection assume
that the entire network is available for online analysis. In
practice, this is not really true, because only restricted por-
tions of the network may be available at any given time for
analysis. Many social networks such as Facebook have pri-
vacy constraints, which do not allow the discovery of the en-
tire structure of the social network. Even in the case of more
open networks such as Twitter, it may often be challenging
to crawl the entire network from a practical perspective. For
many other scenarios such as adversarial networks, the dis-
covery of the entire network may itself be a costly task, and
only a small portion of the network may be discovered at any
given time. Therefore, it can be useful to investigate whether
network mining algorithms can integrate the network discov-
ery process tightly into the mining process, so that the best
results are achieved for particular constraints on discovery
costs. In this context, we will discuss algorithms for inte-
grating community detection with network discovery. We
will tightly integrate with the cost of actually discovering a
network with the community detection process, so that the
two processes can support each other and are performed in
a mutually cohesive way. We present experimental results
illustrating the advantages of the approach.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Keywords

Community Detection; Network Discovery

1. INTRODUCTION
Most network mining methods such as community detec-

tion usually assume that the entire network is available for
analysis. In practice, social networks are extremely hard

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM’15, February 2–6, 2015, Shanghai, China.

Copyright 2015 ACM 978-1-4503-3317-7/15/02 ...$15.00.

http://dx.doi.org/10.1145/2684822.2685323 .

to fully discover because of their size and privacy concerns.
Some examples of cases where the network is not fully dis-
coverable are as follows:

• Many adversarial networks (such as terrorist networks)
are challenging to discover completely. Usually, the link-
age structures of the most important targets in the net-
work are extremely costly to discover. On the other hand,
the local regions within the proximity of some of less im-
portant nodes may be more easily discovered.

• In many information networks, an effort is required in or-
der to determine the relationships for a given node. This
imposes a cost on the community discovery process, which
needs to be explicitly modeled in the analysis. For ex-
ample, in protein interaction-networks, the relationship
analysis of a protein node to other nodes in the network
is often a data-driven and computationally intensive affair
in its own right.

• Many social networks have privacy constraints which re-
strict the discovery of its linkage structure. For example,
Facebook prevents the discovery of the linkage structure of
participants with a private profile.

• Many online social networks impose limits on the data vol-
ume that can be crawled in any given period of time. In
addition, bandwidth and space constraints naturally limit
the size of the network that can be reasonably crawled in
such scenarios. This limits the size of the network which
can be available for any knowledge discovery task. For
example, while the Facebook network contains over 800
million nodes, it may require about 2 weeks to discover
the linkage structure of 1 million users in the network
[12]. The integration of community and network discov-
ery enables the fast discovery of a much smaller, but more
representative network along with its underlying commu-
nities, in cases where exhaustive discovery is not practical.

In practice, network mining algorithms such as community
detection are often applied to incomplete snapshots of the
underlying networks. Since the quality of any mining process
is highly dependent on the completeness of the underlying
data, this implies that the network discovery phase criti-
cally impacts the final results available to the community
detection process. Therefore, it is interesting to investigate
whether the integration of the network discovery and mining
process can provide higher quality results than a separation
of these phases which are inherently inter-dependent.

An important observation in the context of many commu-
nity detection applications is that, in many cases, we may
wish to cluster a particular target set of nodes of interest
from the known parts of the network. Most of the nodes in

the network (and their linkage structure) outside this tar-
get may not be known in advance, and in many cases, their
community structure may even be impossible to discover be-
cause of the privacy constraints in many real social networks
such as Facebook.

The integration of the specifics of an analytical task into
the network discovery process is likely to lead to a more
focused approach which is well optimized for that task. In
applications where the entire network is not available cleanly
at a given time, the process of community discovery is my-
opic, in that it proceeds with partial information about the
network at any given time. Furthermore, if the target set of
nodes belongs to a particular local region of the network, it
would seem wasteful to even attempt to discover irrelevant
regions of the entire network from an analytical perspective.
Since the discovery of links in the network comes at a cost,
it is therefore important to direct the discovery process ju-
diciously in order to obtain the best results. Furthermore,
in many practical applications, it may not be possible to
discover a very large network exhaustively within a modest
amount of time; therefore it is critical to use community
detection as an approach to balance the network discovery
process effectively over the portions of the network relevant
to the target nodes. Thus, network discovery and commu-
nity discovery are two mutually dependent processes which
enhance one another.

In this paper, we will present a method to tightly in-
tegrate community and network discovery, by alternating
these phases in a mutually enhancing and cost-sensitive pro-
cess. In order to achieve this goal, we will interweave an in-
cremental community maintenance algorithm with an algo-
rithm which queries carefully selected nodes in the network
for further exploration of their locality. It is clear that the
direction of this mutually enhancing process will be highly
influenced by the target node set.

An important observation is that not all nodes are equally
important from the perspective of community discovery, and
therefore the node selection approach is critically important
to the process. For example, consider the case illustrated in
Fig. 1, in which the known parts of the network (in terms
of nodes and edges) are illustrated in black, whereas the un-
known parts of the network are illustrated in gray. We note
that the existence of an unlabeled gray node is essentially
unknown. This means that all of its incident edges (dashed
lines) must also be unknown, since none of its neighbors have
ever been queried. In the Fig. 1, we have shown four possi-
bilities for nodes being queried, which are denoted by 1, 2, 3
and 4 respectively. It is clear that node 2 and 4 have smaller
degree in the known network compared to nodes 1 and 3. In
many cases, this is a direct result of the fact that the cor-
responding node also has low degree in the overall network,
as a result of which it is often a poor choice to query. How-
ever, the degree alone tells us very little about the choice
of node to query, especially when we are trying to discover
all the communities in the network in a balanced and easy
way. For examples, nodes 1 and 3 have similar degree, with
the main difference that node 3 has known incident edges
all from community A while node 1 is connected to different
communities in the network. As a result, it is more likely
that by querying node 3, we may be able to learn more about
community A and increase its density. If we query node 1
instead, two communities then will merge together and ren-
der it difficult to partition them later. It is clear that the

Community A Community B

1

2

3

4

Figure 1: An illustrative example: selection of node
interacts with the community discovery process.

known linkages in the discovered network provide us with
interesting hints about the portions of the network to query,
especially when we can relate them to the communities in
the underlying network. This motivates the integration of
the community and network discovery problem in a unified
framework.

This paper is organized as follows. The remainder of this
section discusses related work. In Section 2, we present the
integrated model for network and community discovery. In
Section 3, we present algorithms for integrating network and
community discovery. Section 4 contains the experimental
results. Section 5 contains the conclusions and summary.

1.1 Related work
The problem of community detection is related to that

of finding dense regions in the underlying graph [11, 26].
Community detection is generally defined in the form of a
clustering/partition of the underling network [8, 9, 15, 10, 2].
Surveys of a number of important algorithms for community
detection are provided in [22, 10]. Evolutionary character-
istics of dynamic communities are studied in [1, 7, 8]. The
problem of community detection has also been studied in
the context of combining node and edge content in order to
improve its effectiveness [20, 24, 27]. Some work has been
done [17] on community detection with incomplete informa-
tion networks with the use of available content. This work
is however not designed for dynamic network discovery in
conjunction with community detection.

On the network discovery and sampling side, significant
work has been done on sampling large graphs [16, 21], though
these methods assume knowledge of the structure of the en-
tire network for the sampling process. Some work has been
done on sampling web documents [3, 14], though these meth-
ods use simple random walk methods in conjunction with
web page content. This is often not suited to community
discovery, especially in scenarios where significant content
is not available. Some recent methods [12, 13, 25] have
extended these random walk methods to social networks,
though these methods are not necessarily focused on de-
termining the best communities in the underlying network,
especially where the costs of exploring different nodes may
be quite different.

2. INTEGRATED MODEL FOR COMMU-

NITY AND NETWORK DISCOVERY
In this section, we will discuss the integrated model for

network and community discovery. We assume that the so-
cial network in which the communities need to be discovered

are denoted by G = (N,A), where the set of nodes is de-
noted by N and the set of edges by A. We note that the
set of nodes N and edges A are not known in advance, but
can only be discovered at a cost. Initially, only the por-
tion Gs = (Ns, As, Qs) is known, and it is assumed that
the communities need to be discovered over a target set of
nodes Nt ⊆ Ns. Therefore, we have Nt ⊆ Ns ⊆ N . The
set Qs contains the costs for the corresponding nodes in Ns,
and this set has one entry for each node in Ns. In many
real applications, very little about the linkage structure of
the nodes in Nt may be known, and it is critical to dis-
cover those portions of the network, which are best related
to the different target nodes. In the most extreme case, we
may know nothing about the network at all beyond the tar-
get set we wish to cluster. In this case, the edge set As is
empty, the set Ns and Nt are identical.

Our model assumes that incrementally larger portions of
the network will be discovered by this process, which will
help in further improving our knowledge of the community
structure of the target set Nt. This will in turn provide
us with better hints about further directions of exploration.
During this process, we assume that the currently known
portions of the network are denoted by Gc = (Nc, Ac, Qc),
where Nc ⊆ N and Ac ⊆ A. It is not necessary that all the
edges incident on any particular node in Nc are included
in Ac. The currently known portion of the network at the
point of initialization is Gc = Gs = (Ns, As, Qs), though
the size of the network Gc increases as more portions of it
are discovered over time. We assume that the user has the
ability to query any node i ∈ Nc in order to determine all
the (observable) nodes which are incident on it, and cost
of doing so is given by qi ∈ Qc. For simplicity, we assume
that the network G is binary and undirected. We note that
the case, where the linkage structure of a node i cannot be
discovered at all (eg. a private nodes in Facebook) can be
easily modeled by setting qi = B +1 for that node where B
represents budget. Furthermore, in some applications, the
value of qi may be the same, whereas in other more complex
biological or adversarial networks, the value of qi may vary
across different nodes, depending upon the importance of
the target. In cases where qi cannot be estimated effectively,
the default a-priori assumption is that the costs of querying
different nodes are identical. In many practical applications
such as Facebook, this cost may be estimated from the binary
set {1, B+1}, depending upon whether or not that node is a
private node. We assume that a quick estimate qi on the cost
of discovering the locality of a node can be determined, once
that node has been revealed during the network discovery
process. In some applications, where no a-priori information
is available, the budget constraint may be expressed in terms
of the maximum number of nodes, which are allowed to be
queried.

The integrated problem of community and network dis-
covery is to effectively determine the communities in the
underlying social network within a given budget B on the
costs. We further note that soft variations of this problem
are possible, in which a hard budget may not be specified,
but any-time (or any-budget) algorithms can be designed for
progressively enhancing the community structure over time.
By querying nodes in the network for their adjacent local-
ity, we also discover many neighbors of nodes in the network
which have not been queried so far. The communities in the
network are constructed simultaneously with the network

discovery process, and the current structure of communities
is used as one of the inputs for deciding the order of query-
ing the nodes. It is critical to discover the link structure of
nodes in an order which best enables a robust discovery of
the underlying communities at a low cost but high coverage.
We will formulate the problem of integrated network and
community discovery as follows:

Definition 1 (Network and Community Discovery). Given
a starting network Gs = (Ns, As, Qs), a target node set
Nt ⊆ Ns, and an ability to query any node i from the cur-
rently discovered set of nodes for their adjacent links at cost
ci, cluster the target node set Nt into the set of k most tightly
linked communities in the network within a total query bud-
get B.

2.1 Desiderata for Network and Community
Discovery

We note that the network and community discovery prob-
lems are two tightly integrated problems, whose solutions
mutually enhance one another. In most real world situa-
tions, the entire network can never be discovered in prac-
tice. Nevertheless, a robust discovery of the underlying net-
work and the underlying communities has a number of goals
which happen to be common in practice. These goals are as
follows:

• It is desirable to discover as many nodes of the network
in the locality of the target set Nt as possible within the
given budget constraints. This would be a common goal of
any network discovery method, which attempts to discover
the locality of the target nodes of interest, in order to
determine their relationships with one another.

• The discovered portions of the network should be as well
balanced over the different portions of the network (rel-
evant to the target nodes) as possible. In terms of the
communities in the underlying network, this implies that
the different communities in the network (containing the
target nodes) should have a similar percentage of discov-
ered nodes. This requirement tends to suggest that the
community and network discovery problems are tightly
integrated problems which need to be solved in unison.

• It is desirable to discover communities which are highly
clustered and the corresponding nodes are densely linked
together. This would be a common goal of any community
discovery method.

We note that some of the afore-mentioned goals are unique
to community detection, and others are unique to network
discovery, and yet others are common goals of community
and network discovery. Therefore, it makes sense to design
algorithms for network and community discovery in a single
unified framework in the context of a target node set.

3. NETWORK AND COMMUNITY DISCO-

VERY ALGORITHMS
We will design an incremental algorithm for community

as well as network discovery which maintains a current net-
work Gc = (Nc, Ac, Qc), in which the network Nc is always
dynamically partitioned into a current set of K communities
denoted by Cc = C1

c , . . . , C
K
c . It is assumed that we initially

know nothing about the network beyond the target set we
wish to cluster. The algorithm proceeds in a set of alternat-
ing steps of discovering localities of specific nodes and then

Algorithm NetDiscover(Initial Network: Gs, Budget:
B, Number of Communities: K, Target Node set: Nt)

Gc = Gs = (Ns, As, Qs)
Initialize current cost q = 0
Query target nodes Nt, update Gc, q
Initialize sampled nodes set S = Nt

Cc = Initial clustering on subgraph of Gc induced by S
while budget B is not exhausted do

i = ChooseNode(Gc, Cc, S, q, B)
S = S ∪ {i}
q = q + qi
Gi = (Ni, Ai, Qi) = DiscoverLocality(i)
Gc = Gc ∪Gi = (Nc ∪Ni, Ac ∪Ai, Qc ∪Qi)
Cc = UpdateCommunity(Gc, i, S, Cc)

end

Algorithm 1: Integrating Network and Community Dis-
covery

updating the communities with this discovered locality. Each
step of the algorithm proceeds through successive querying
of a node in the network followed by the re-adjustment of the
current communities in the network. The overall framework
of the integrated algorithm is presented in Alg. 1.

This re-adjustment of the communities is performed on
the induced subgraph of Gc based on sampled nodes set
S, which have already been discovered so far. An induced
subgraph is defined as follows.

Definition 2 (Induced Subgraph). G′ = (N ′, A′) is the
induced subgraph of G = (N,A) based on the node set N ′ if
N ′ ⊆ N and A′ = (N ′ ×N ′) ∩A.

Clearly, the effectiveness of the approach depends criti-
cally upon the order of nodes discovered in the network.
The choice of node discovery also depends upon the cur-
rent community structure of the network, and therefore it
is critical to maintain a high quality clustering of the net-
work during the querying process. It is worth noting that
we query all the target nodes as the first step in order to
ensure the connectivity of Gc for initial clustering. Further-
more, it is important to discover the linkage structures in
the network, as they relate to the target nodes.

The overall framework of the algorithm in Alg. 1 crit-
ically depends upon the process used for discovering the
nodes, and updating the community structure. These are
respectively denoted by ChooseNode and UpdateCommunity
in Alg. 1. We will discuss these components subsequently in
the following subsections.

3.1 Network Discovery
Each iteration of the algorithm in Alg. 1 needs to decide

the choice of the node to query. The discovery of the ap-
propriate node to query in order to further explore the best
locality is critical in the context of the current community
structure Cc. Since the goal of our approach is community
detection, we focus on the selection of node from the current
set of candidates in Nc−S, which better helps in partitioning
the target nodes. There are several key criteria for designing
an effective network discovery module.

Before introducing them, we will first examine the over-
all algorithmic framework for choosing the node (denoted
by the ChooseNode function in Function 1. This function

first computes a score based on a certain measure for each
candidate node in Gc and then adjusts the score depending
upon its cost. In the end, the node with the lowest score
is returned by the function. This is added to S, the set of
nodes which have been queried so far.

Function ChooseNode(Current Network: Gc, Clustering:
Cc, Sampled nodes set: S, Current cost: q, Budget: B)

Initialize dictionary D (key: candidate nodes, value:
score)
for each node i in Nc − S do

if q + qi ≤ B then
D[i] = ComputeScore(Gc, S, Cc, i)

end

end
AdjustScore(D,Qc)
if D is empty then

Send Message: Budget B is exausted
else

return node with lowest score in D
end

Function 1: Network Discovery

From our practical study, we discovered three main crite-
ria for the design of the ComputeScore function:

• High Purity: It is better for the neighborhood of a node
belonging to the same partition. This tends to help that
community to be more dense and push the center of that
community far apart from other communities.

• Large Observed Degree: We note that the successive
querying of nodes increases our partial information about
the link structure of other nodes in the network (i.e. nodes
not already in S) for future querying. Nodes with more
observed links are preferred. Because it is assumed that
the unobservable links of a node are proportional to the
already discovered links. By choosing such nodes, we can
help expand Gc quickly and render the network denser.

• Balanced Communities: It is critical to keep differ-
ent partitions balanced through the process of node and
edge addition into Gc. Unbalanced partitions are usually
detrimental both for the qualitative results found by the
community detection approach, and for the stability of
the incremental community discovery algorithm, which is
used in the approach.

These criteria provide the insights needed for the effective
design of the function for network discovery. We propose
two simple measures for the ComputeScore function inspired
from Normalized Cut and Modularity following the criteria.

3.1.1 Normalized Cut

The normalized cut criterion measures the total dissim-
ilarity between the different communities in the context of
the total similarity within the same communities [23]. It was
originally proposed for the graph segmentation problem, and
is defined as follows:

K
∑

k=1

cut(Ck
c , S − Ck

c)

assoc(Ck
c , S)

Here, cut(Ci
c, C

j
c) is the count of the edges between two groups

of nodes: Ci
c and Cj

c . The notation assoc(Ci
c, S) denotes the

total degrees of nodes in Ci
c within the subgraph of Gc in-

duced by S. The minimization of the Ncut measure, tends
to minimize the similarity across a cut, while simultane-
ously maximizing the similarity within the same community.
The balance among different communities is directly incor-
porated through dividing the cut by total edge count for
each community.

While the Ncut measure was originally designed for image
segmentation in the context of static graphs, our goal here is
to greedily select a node which can minimize the Ncut mea-
sure after adding it into the graph. Hence, the new measure
considering the added new node i is defined as follows:

min
k′

K
∑

k=1,k 6=k′

cut(Ck
c , S ∪ {i} − Ck

c)

assoc(Ck
c , S ∪ {i})

+
cut(Ck′

c ∪ {i}, S − Ck′

c)

assoc(Ck′

c ∪ {i}, S ∪ {i})

(1)

Under the assumption that the community membership of
the old nodes in the graph do not change after adding new
nodes, we try different possibilities for membership for the
new node, and return the minimum value.

3.1.2 Modularity

Modularity is another well-known measure to evaluate the
strength of partitioning a network into communities [9]. It
is the additional fraction of the edges that fall within the
given communities over the expected fraction, if the edges
were distributed at random:

K
∑

k=1

(

e(Ck
c , S)− a(Ck

c , S)
2

)

Here, e(Ck
c , S) is the fraction of edges for which both end

points are in the same community Ck
c on the induced sub-

graph of Gc by S. And a(Ck
c , S) is the fraction of edges with

at least one of the end node lie in communities Ck
c on the

induced subgraph of Gc by S.
Different from the Normalized Cut, networks with high

modularity have dense connections between the nodes within
the same community and sparse connections between nodes
in different communities. It is reported in [28], that the mod-
ularity measure works well when the communities in the net-
work have comparable size. The well-known resolution limit
of modularity [29] reflects its preference over large commu-
nities, which is not a problem in our setting because com-
munities are maintained to be balanced. Therefore, when a
new node is added into the induced graph of Gc by S, we
iteratively set different labels to the new node and recom-
pute modularity in order to find the choice that results in
the largest value. Since the previous measure (Ncut) was
a minimization problem, and modularity is a maximization
function, we use the negative of the score for consistency in
implementation. Therefore, the score function is defined as
follows:

−max
k′

K
∑

k=1,k 6=k′

(

e(Ck
c , S ∪ {i}) − a(Ck

c , S ∪ {i})2
)

+

(

e(Ck′

c ∪ {i}, S ∪ {i}) − a(Ck′

c ∪ {i}, S ∪ {i})2
)

(2)

3.1.3 Incorporating Costs

In the previous discussion, we mainly focus on two mea-
sures satisfying the three criteria: high purity, large degree
and balanced communities, while overlooking the trade off
between the computed score of the node according to Eq. 1
or 2 and its cost.

Function AdjustScore(Score Dictionary D, Cost Set Qc)

Sort D by ascending values to determine rank()
for each node i in D.keys do

D[i] = rank(i)× qµi
end

Function 2: Adjust Score

Instead of directly balancing between the scores computed
through Eq. 1 or 2 and the cost Qc, the ranking among
different nodes is preferred since they present a relatively
stable choice over unknown and possibly widely varying dis-
tributions of Ncut and Modularity. A general and simple
method to handle the trade off is preferable. Specifically, we
use the following function:

D[i] = rank(i)× qµi (3)

The parameter µ in the function is set for adjusting the
relative importance between the node’s query cost and its
contribution for network discovery. For high values of µ,
the cost portion weights more in the function and low-cost
nodes are preferred. When µ = 0, the selection of node is
only dependent on the ComputeScore function. Our imple-
mentation of the approach is described in Function 2. We
will study the selection of appropriate µ in the experimental
section.

3.2 Community Discovery
As described in Alg. 1, the UpdateCommunity function is

executed during each iteration together with locality discov-
ery process. We would like to be able to perform this process
incrementally in an efficient way. Another characteristic of
our scenario is that when new nodes and edges are gradu-
ally merged into the existing network, it is naturally required
that the community detection algorithm can be incremen-
tally updated and the new partition must be consistent with
the last update. The third requirement is related to the fixed
number of communities. We adopt a generative model [2],
which has a fast and closed-form EM solution and propose
an incremental and efficient update process.

As in all EM methods, the algorithm proceeds with the
use of parametric learning. For each node i in the network, a
set of parameters θik define the propensity of node i to have
edges of community k. Therefore, under the independence
assumption, the value θik ·θjk represents the expected num-
ber of edges of community k that lie between nodes i and
j. And the exact number Aij is Poisson distributed around
this expected value. Thus the probability of generating a
graph G = (N,A) is:

P (G|θ) =
∏

i≤j

(
∑

k θikθjk)
Aij

Aij !
exp(−

∑

k

θikθjk)

By using the EM framework to maximize the likelihood, we
can show that the following update equations can be derived
for the expectation and maximization steps respectively:

qij(k) =
θikθjk

∑

k θikθjk
(4)

θik =

∑

j Aijqij(k)
√

∑

ij Aijqij(k)
(5)

The cluster membership (or label) of a node may be obtained
based on the maximum likelihood principle:

Labeli = argmaxk θik

Function 3 shows the afore-mentioned details of the Up-
dateCommunity function, with the corresponding E- and M-
steps. A key point to keep in mind is that the incremental
nature of the algorithm can be leveraged for efficient pa-
rameter learning. In particular, since the UpdateCommunity
function is called repeatedly, on a continuously incremented
network, there is no need to learn the parameters of all the
edges during each call. Only those edges, which are linked
to the newly added node are initialized, and the parameters
from previous iterations provide a good starting point for
the other edges. It is evident that the time complexity of

Function UpdateCommunity(Network: Gc, New node: i,
Sampled nodes set: S, Clustering: Cc)

Initialize qij(k) for edges linked to it
while not convergent and #iterations not exceeded do

for each community k do
for each node in induced subgraph of Gc by S do

Update θik according to Eq. 4
end
for each edge in induced subgraph of Gc by S do

Update qij(k) according to Eq. 5
end

end

end

Function 3: Community Discovery

UpdateCommunity function is O(|(S × S) ∩ Ac|K + |S|K).
This is still quite high. Therefore, we design an efficient
strategy called local updating in order to improve the under-
lying efficiency.

During each run of UpdateCommunity, after ChooseNode
and DiscoverLocality, it is expected that the cluster mem-
bership of some nodes are changed, and the parameters in
the generative community detection model, e.g., qij and θi,
are updated. However, with the expansion of the size of
the crawled network, the cluster membership and EM pa-
rameters become more and more stable without significant
changes with increase in network size. Under such condi-
tions, a global update process, which works with all nodes
and edges, would seem to be rather wasteful, considering its
limited improvement of the partition result. On the other
hand, a local update process, focuses on the locality of the
new node added to the network.

In the local update process, the locality is first defined
to be the induced subgraph of Gc by the chosen node i
and its neighborhood. Similar to the global update pro-
cess described in Function 3, the edges linked to i need to
be initialized. After this, both θi and qij within the locality
can be updated according Eqs. 4 and 5. It is worth noting
that in the local update version of Eq. 5, the denominator

√

∑

ij Aijqij(k) should still refer to all edges between sam-

pled nodes set S instead of just the locality. Fortunately,
this value can be easily computed based on the last update
when node i was not in S. Moreover, as θi changes over
time, and it is affected by the M-step computation for other
nodes, all nodes in S should be updated as well. Therefore,
the overall time complexity of the local update is O(|S|K).

The idea in the local update process is to allow small
errors in nodes which are not significantly affected by the
increase in the network size. However, it is also important
to ensure that such errors do not become cumulative over
time, and affect the algorithm significantly. Therefore, we
combine local and global updates by periodically running
a global update. In our case, we set the condition that the
global update is run, only when the network size (in terms of
the number of edges) increases by at least 10%. We further
note that as the network size increases, the global update
process is run less and less frequently on a relative basis.

4. EXPERIMENTAL RESULTS
In this section, we will show that the integration of com-

munity and network discovery provides significantly more
effective results over other methods which do not treat the
two as an integrated process.

4.1 Effectiveness Measures
The effectiveness was measured with the help of externally

available class labels. These class labels were not used in the
clustering process, and therefore they provide an intuitive
validation measure for the quality of the clustering process.
Let there be m different class label values on the nodes.
We further note that the effectiveness was measured only in
terms of the target nodes, since the goal of the community
detection process is to determine the clusters on this target
set of nodes in the network. Let r1 . . . rk be the number
of (labeled) target nodes in the k different clusters found
by the algorithm. We note that the value of k may not
necessarily be the same as the number of classes m. Let pij
be the fraction of the labeled target nodes in the ith cluster,
which belong to the jth class. Then, the dominant class label
fraction for the ith cluster is given by:

Ei = maxj∈[1,...m]pij (6)

We note that Ei is always in (0, 1], and in the ideal case,
where all nodes of the cluster belong to the same class, the
value of Ei is 1. Then, the average cluster purity ACP is
defined as follows:

ACP =

∑k

i=1 ri · Ei
∑k

i=1 ri
(7)

A high value of cluster purity will indicate good quality of
clustering. Of course, by increasing the granularity of clus-
tering (i.e. increasing k), the average cluster purity is likely
to increase over a constant number of class labels m. In the
limiting case, when each labeled target node is placed in its
own cluster, the average cluster purity will be 1.

The afore-mentioned measure is defined only on the basis
of the dominant label of each cluster and tends to ignore
the behavior of the other less dominant labels. In order
to incorporate those labels into the measure, it is possible
to define a measure known as the average cluster entropy

(ACE) of a cluster by analogously defining the entropy Fi

of cluster i as follows:

Fi = 1−

m
∑

j=1

p2ij (8)

The entropy is closely related to the gini-index. Lower values
of entropy are synonymous with better purity. For example,
a cluster which contains all nodes of the same label will
have an entropy of 0. A cluster whose nodes are evenly
distributed among the m different classes will have a rather
large entropy value of 1− 1/m. Correspondingly, we define
the average cluster entropy as follows:

ACE =

∑k

i=1 ri · Fi
∑k

i=1 ri
(9)

The value of ACE lies in [0, 1−1/m]. However, unlike ACP,
the value of ACE is lower for a better clustering.

4.2 Data Set Descriptions

Table 1: Statistics of the three data sets
Dataset Nodes Edges #Target Clusters
Synthetic 36,000 199,654 500 10
DBLP 28,702 66,832 115 4
IMDB 153,369 1,631,604 1,000 5

We used one synthetic and two real data sets for testing
our approach. Important statistics of them are summarized
in Table 1. We describe these data sets below:

Synthetic dataset: Among the 36,000 nodes of the net-
work, one sixth are generated from 5 clusters as“meaningful”
nodes according to [4] where each node has 3 out-cluster and
8 within-cluster neighbors. The left 30,000 nodes are acting
as “noisy” nodes because their links to neighbors are ran-
domly generated. Target nodes are sampled from the 6,000
“meaningful” candidates with the expectation that as the
network expands, new discovered “meaningful” nodes can
help improve the community detection performance.

DBLP dataset: It is a collection of bibliographic informa-
tion on major computer science journals and proceedings.1

In this experiment, we view the authors as the nodes in the
network and link any pair of authors if they have co-authored
papers. 115 authors from four real research groups led by
Prof. Christos Faloutsos, Prof. Dan Roth, Prof. Jiawei Han
and Prof. Michael Jordan respectively are selected as target
nodes.

IMDB dataset: The Internet Movie Database (IMDB)2

is an international organization whose objective is to pro-
vide useful and up to date movie information freely avail-
able on-line. We create the network based on the co-actor
and co-director relationship among different movies. The
genre information is considered as the clustering label and
from which we pick family, thriller, romance, comedy and
adventure as the genres for generating target nodes.

4.3 Compared Algorithms
As the effectiveness of the approach depends critically

upon the order of nodes discovered in the network, and
the network discovery part is our main focus, we maintain

1http://www.informatik.uni-trier.de/ ley/db/
2http://www.imdb.com/

the same community detection algorithm discussed in Sec-
tion 3.2 while testing different network discovery strategies.
Specifically, we compared the following strategies, some of
which are ours, and the others are baselines:

• Random Sampling approach (Baseline): This strategy ran-
domly picks one node from Nc−S as the candidate to dis-
cover its locality. This approach is blind to the community
structure, though it represents the most commonly used
strategy for network discovery.

• Greedy approach (Baseline): Unlike the random sampling
approach, which achieves a uniform distribution over nodes
in Nc−S, the largest degree node from the current discov-
ered subgraph is selected. This has the virtue of discov-
ering as much of the network as possible. In some cases,
this can help the community detection process, since it
provides a greater amount of information about the un-
derlying network.

• Degree + Entropy approach (Baseline): This approach
covers the first two criteria mentioned for the design of
the ComputeScore function: purity and large observed de-
gree. The particular measure computed for each node is
entropy/degree where entropy is computed based on the
clustering distribution of the node’s one-hop neigbhour-
hood. Node with the smallest value is selected.

• Ncut-based Search (Ours): As described in an earlier sec-
tion, this approach uses a canonical normalized cut mea-
sure for providing best results in terms of the criteria de-
scribed earlier.

• Modularity-based Search (Ours): This is the modularity-
based approach for node se selection, which was described
earlier in the paper.

To simulate real world scenario, we must assign cost to nodes
in the network. Due to the fact that many types of data
studied in the physical and social sciences can be approx-
imated with the Zipf distribution, we decided to use it to
generate the cost. At the beginning, we shuffle all the nodes
and assign each node its index in the shuffled list from 1 to
|S|. Then we compute the cost of node i as follows:

costi =
1/index(i)λ
∑|S|

n (1/nλ)
(10)

Here λ is the value of the exponent characterizing the dis-
tribution. Larger values of λ correspond to greater skew.
In this paper, we conducted two sets of experiments, in the
first of which λ is set to 0, corresponding to the case where
costs are constant. In the second case, the value of λ was
set to 0.8.

4.4 Practical Details
In order to randomize the experiments, 20 test runs with

different random initializations were conducted and the av-
erage performance is reported. For the sake of comparison,
even though both random sampling and greedy approach
do not depend on the community detection results, we still
run the UpdateCommunity function after each run of net-
work discovery module. This provides a temporally uninter-
rupted insight about how the different methods perform at
each step.

Since generative models are prone to get trapped in local
optimum because of the large solution space, we use spectral
clustering [19] to obtain the partition and then incorporate

Budget / Samples
115 500 1000

P
u

ri
ty

0.86

0.88

0.9

0.92

0.94

0.96

0.98

DBLP

NCut
Modularity
Random
Greedy
D-Entropy

Budget / Samples
1000 1500 2000 2500 3000

P
u

ri
ty

0.5

0.55

0.6

0.65
IMDB

NCut
Modularity
Random
Greedy
D-Entropy

Budget / Samples
500 1000 1500 2000 2500 3000

P
u

ri
ty

0.55

0.6

0.65

0.7

0.75

0.8
Synthetic

NCut
Modularity
Random
Greedy
D-Entropy

Budget / Samples
115 500 1000

E
n

tr
o

p
y

0.05

0.1

0.15

0.2

0.25

DBLP

NCut
Modularity
Random
Greedy
D-Entropy

Budget/Samples
1000 1500 2000 2500 3000

E
n

tr
o

p
y

0.5

0.55

0.6

0.65
IMDB

NCut
Modularity
Random
Greedy
D-Entropy

Budget / Samples
500 1000 1500 2000 2500 3000

E
n

tr
o

p
y

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Synthetic

NCut
Modularity
Random
Greedy
D-Entropy

Figure 2: Performance of NetDiscover on different network discovery strategy on three datasets.

this into the generative model as prior. For each edge (i, j)
in the network, as qij can be viewed as the probabilities
that one edge belongs to certain clusters [2], we first ini-
tialize it randomly, and after this add a small value to the
corresponding clusters according to the linked nodes’ labels
from spectral clustering. This way of initialization is also
applied to the incremental “local update” function for new
nodes merged into Gc based on existing nodes’ community
memberships. Multiple trials are done to find the maximum
likelihood. To further accelerate the EM updates, we select
multiple nodes at one time, saving the time cost on Com-
puteScore function.

4.5 Effectiveness Results
The program was implemented in Python and all the ex-

periments are conducted on a desktop running Windows 7
Professional, with an Intel Core I7 2600, 16GB memory and
Python 2.7 installed. We conducted three sets of experi-
ments. In the first set, each node’s cost is equal to 1, and
the budget is expressed in terms on the number of nodes.
The second set of experiments take cost into consideration,
and the last set contains sensitivity experiments.

4.5.1 Results with constant costs

In this set of experiments, the cost of each node is set to 1,
and therefore the budget is a limit on the number of nodes
in S. Fig. 2 shows the clustering performance (purity /
entropy) of different network discovery algorithms on all the
three data sets. In each case, we have shown the incremental
performance of the algorithm with increasing value of the
budget (number of nodes) on the X-axis. For each data set,
we have alternately shown the purity and entropy measures
on the Y -axis. It is evident that the schemes which are
sensitive to the underlying community structure outperform
the baselines significantly.

One interesting aspect of the results was that the perfor-
mance of the baselines actually worsen with increasing bud-
get. This is a result which is counter-intuitive; after all, more
knowledge about the network should enhance the quality of
the community discovery. It turns out that this is not really
true– when we are trying to perform community detection
in the context of a specific set of target nodes, a network
discovery process which is blind to the underlying commu-
nity structure is likely to add noisy and irrelevant nodes and
links for understanding the community structure in that tar-
get set. In fact, even though the greedy baseline discovers
the largest knowledge about the link structure, it performs
worse than even the random sampling baseline, as it adds
a lot of noisy information to the network structure. Fur-
thermore, the greedy baseline is the least stable among all
algorithms. For the case of our two integrated algorithms, it
is evident that the quality of the results generally improve
with increasing budget. In particular, the improvement over
small ranges of the budget is quite significant. However, this
improvement tapers off after a while, when all the relevant
link structure for the particular set of target nodes has been
discovered, and it does not necessarily help to add further
structural information to the community detection process.

In terms of the relative behavior of our two algorithms, it
is evident from the charts that the average behavior of the
modularity-based algorithm was slightly superior over the
data sets. At the same time, the modularity-based approach
was more stable than the Ncut-based method in terms of
providing more consistent results.

Specifically, Fig. 4 gives two snapshots of experiments on
DBLP data set about the neighborhood of Prof. Christos
Faloutsos from two different network discovery strategies.
Clearly our proposed one incorporates more knowledge from
the network into the induced subgraph.

Budget
115 500 1000

P
u

ri
ty

0.86

0.88

0.9

0.92

0.94

0.96

0.98

DBLP (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Budget
1000 1500 2000 2500 3000

P
u

ri
ty

0.5

0.55

0.6

0.65
IMDB (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Budget
500 1000 1500 2000 2500 3000

P
u

ri
ty

0.55

0.6

0.65

0.7

0.75

0.8
Synthetic (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Budget
115 500 1000

E
n

tr
o

p
y

0.05

0.1

0.15

0.2

0.25

DBLP (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Budget
1000 1500 2000 2500 3000

E
n

tr
o

p
y

0.5

0.55

0.6

0.65
IMDB (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Budget
500 1000 1500 2000 2500 3000

E
n

tr
o

p
y

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Synthetic (λ =0.8)

NCut
Modularity
Random
Greedy
D-Entropy

Figure 3: Performance of NetDiscover on different network discovery strategy on three datasets.

Christos Faloutsos

Jia-Yu (Tim) Pan

Jure Leskovec

Agma J. M. Traina Jon Kleinberg

D. Chakrabarti

Christos Faloutsos

Jia-Yu (Tim) Pan

Jure Leskovec

Ibrahim Kamel Jean Bolot

D. Chakrabarti

(a) (b)

Figure 4: (a) Neighborhood of Prof. Christos
Faloutsos using Ncut-based Search (b) using random
sampling approach

4.5.2 Results with variable node costs

We test our algorithms on the simulated skewed-cost sce-
nario which is generated according to the Zipf distribution.
The results with increasing budget are illustrated in Fig. 3.
The costs were normalized to the same average value of 1 as
the previous case for convenience of comparisons.

When the cost is involved in the decision of choosing new
nodes, the small-cost and good-quality nodes are preferred.
Therefore, more nodes can be crawled within the same bud-
get. So within the same budget, more nodes are discovered.
This helps the discovery process. It is evident that even
in this case, both our community detection schemes were
superior the baselines. While the curves of our proposed
strategies were shifted somewhat because of the incorpora-
tion of costs, the overall trends remained the same in this
case as well. Thus, our approach is superior to the baselines
in both the scenarios.

4.5.3 Parameter study

It is evident from the previous section that the algorithm is
able to achieve effective results even in the cost-centric case.

We note that the choice of the parameter µ regulates the
impact of costs in the network discovery process. Therefore,
this section will test the impact of this parameter.

Due to the space limitation, we show the result only for
modularity-based algorithm on the synthetic data set, since
we found the sensitivity behavior to be similar across our
two algorithms on the different data sets. We study the
performance with respect to different values of µ in the first
figure in Fig. 5. The figure next to it depicts the number of
nodes involved in the incremental network.

For larger values of µ, nodes with smaller cost are more
easily chosen. This helps the network expand more quickly.
Therefore, with larger values of µ, the community detec-
tion performance improves more when budget is relatively
small. At the same time, the performance curve flattens
more quickly as the “useful” nodes are exhausted. As men-
tioned before, some good-quality but high-cost nodes could
be missed when µ is large, and this tends to impact the per-
formance. Among all the curves, the best one is with µ set to
0.05. Such a small parameter helps the algorithm to choose
a small-cost node when there exist multiple candidates with
the same quality (rank). The experiments seem to suggest
that when the budget is limited, it is more important to fo-
cus on lower cost nodes and set µ to a large value. On the
other hand, when the budget is large, it is more rewarding
to focus to high-quality nodes, and therefore µ may be set
to a lower value.

5. CONCLUSIONS
Social and information networks are often massive, and

it is not possible to discover the entire network for prob-
lems such as community discovery. In many real-life situa-
tions, the network may not be fully discoverable in practice.
The results of this paper suggest that it can be fruitful to
integrate the community detection and network discovery

Budget
50010001500 3000 5000

P
u

ri
ty

0.73

0.74

0.75

0.76

0.77

0.78
Synthetic (λ = 0.8)

µ=0
µ=0.05
µ=0.1
µ=1.0

Budget
500 1500 3000 5000

#
N

o
d

e
s

0

2000

4000

6000

8000

10000

12000

Synthetic (λ = 0.8)

µ=0
µ=0.05
µ=0.1
µ=1

(a) (b)

Figure 5: (a) Performance of NetDiscover with re-
spect to budget (different µ) (b) Total discovery wrt
budget (different µ)

processes into a unified framework. This can provide much
more effective results than an approach which tries to blindly
discover the network for a variety of mining algorithms.

6. ACKNOWLEDGEMENTS
Research was sponsored in part by the Army Research

Lab. under Cooperative Agreement No. W911NF-09-2-
0053, the Army Research Office under Cooperative Agree-
ment No. W911NF-13-1-0193, National Science Foundation
IIS-1017362, IIS-1320617, and IIS-1354329, HDTRA1-10-1-
0120, and MIAS, a DHS-IDS Center for Multimodal Infor-
mation Access and Synthesis at UIUC.

7. REFERENCES
[1] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg,

and X. Lan, Group formation in large social networks:
membership, growth, and evolution, ACM KDD
Conference, pp. 44–54, 2006.

[2] B. Ball, B. Karrer and M. E. J. Newman, An efficient
and principled method for detecting communities in
networks, Physical Review, E 84(3), 036103, 2011.

[3] E. Baykan, M. Henzinger, S. Keller, S. De Castelberg,
and M. Kinzler, A comparison of techniques for
sampling web pages, CoRR, abs/0902.1604, 2009.
http://arxiv.org/abs/0902.1604

[4] U. Brandes, M. Gaertler and D. Wagner, Experiments
on graph clustering algorithms, European Symposium
on Algorithms, pp. 568–579, 2003.

[5] C. Aggarwal and H. Wang, Managing and Mining
Graph Data, Springer, 2010.

[6] C. Aggarwal, Social Network Data Analytics, Springer,
2011.

[7] D. Chakrabarti, R. Kumar, and A. Tomkins,
Evolutionary clustering, ACM KDD Conference, pp.
554–560, 2006.

[8] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng,
Evolutionary spectral clustering by incorporating
temporal smoothness, ACM KDD Conference, pp.
153–162, 2007.

[9] A. Clauset, M. E. J. Newman, and C. Moore, Finding
community structure in very large networks, Physical
Review, E 70(6), 066111, 2004.

[10] S. Fortunato, Community detection in graphs, Physics
Reports, 486(3), pp. 75–174, 2010.

[11] D. Gibson, R. Kumar, and A. Tomkins, Discovering
large dense subgraphs in massive graphs, VLDB
Conference, pp. 721–732, 2005.

[12] M. Gjoka, M. Kurant, C. T. Butts, and A.
Markopoulou, Walking in Facebook: A Case Study of
Unbiased Sampling of OSNs, IEEE INFOCOM
Conference, pp. 1–9, 2010.

[13] M. Gjoka, C. T. Butts, M. Kurant, and A.
Markopoulou, Multigraph Sampling of Online Social
Networks, IEEE Journal on Measurement of Internet
Topologies, 29(9), pp. 1893–1905, October 2011.

[14] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork, On near-uniform URL sampling, WWW
Conference, pp. 295–308, 2000.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins, Trawling the web for emerging
cyber-communities, WWW Conference, pp.
1481–1493, 1999.

[16] J. Leskovec and C. Faloutsos, Sampling from large
graphs, ACM KDD Conference, pp. 631–636, 2006.

[17] W. Lin, X. Kong, P. Yu, Q. Wu, Y. Jia, and C. Li,
Community detection in incomplete information
networks, WWW Conference, pp. 341–350, 2012.

[18] Y.-R. Lin, J. Sun, P. Castro, R. B. Konuru,
H. Sundaram, and A. Kelliher, Extracting community
structure through relational hypergraphs, WWW
Conference, pp. 1213–1214, 2009.

[19] A. Y. Ng, M. Jordan, and Y. Weiss, On spectral
clustering: Analysis and an algorithm, NIPS
Conference, pp. 849–856, 2001.

[20] G. Qi, C. Aggarwal, and T. Huang, Community
detection with edge content in social media networks,
IEEE ICDE Conference, pp. 534–545, 2012.

[21] B. Ribeiro and D. Towsley, Estimating and sampling
graphs with multidimensional random walks, ACM
SIGCOMM Conference, pp. 390–403, 2010.

[22] S. Schaeffer, Graph Clustering, Computer Science
Review, 1(1), pp. 27–64, 2007.

[23] J. Shi and J. Malik, Normalized Cuts and Image
Segmentation, IEEE Transactions on Pattern Analysis
and Intelligence, 22(8), pp. 888–905, 2000.

[24] T. Yang, R. Jin, Y. Chi, and S. Zhu, Combining link
and content for community detection: a discriminative
approach, ACM KDD Conference, pp. 927–936, 2009.

[25] S. Ye, J. Lang, and F. Wu, Crawling online social
graphs, Asia-Pacific Web Conference, pp. 236–242,
2010.

[26] Z. Zeng, J. Wang, L. Zhou, and G. Karypis,
Out-of-core coherent closed quasi-clique mining from
large dense graph databases, ACM TODS Journal,
31(2), 2007.

[27] Y. Zhou, H. Cheng, and J. X. Yu, Graph clustering
based on structural/attribute similarities, VLDB
Conference, pp. 718–729, 2009.

[28] S. Zhang and H. Zhao, Community identification in
networks with unbalanced structure, Physical Review,
E 85(6), 066114, 2012.

[29] S. Fortunato and M. Barthelemy, Resolution limit in
community detection, Proceedings of the National
Academy of Sciences , 104(1), pp. 36–41, 2007.

