
Practice	with	2d	lists	
	
For	the	examples	below,	assume	you	have	some	2d	lists	like	this:	
	
matrix = [[1, 3, 5], [2, 4, 6], [3, 6, 9]]
matrix2 = [[5, 2, 8, 4], [-9, 0, 4, 1], [5, 6, 4, 8]]
	

1. Yesterday	we	saw	two	ways	to	create	a	function	add	up	all	the	numbers	on	the	upper-left	to	lower-right	diagonal	of	a	
square	matrix	(a	matrix	with	the	same	number	of	rows	and	columns).		The	key	is	that	all	the	numbers	on	this	diagonal	
have	the	property	that	their	row	index	is	equal	to	their	column	index.			
	
So	one	way	is	to	use	an	if-test:	
	
def add_diagonal(grid):
 total = 0	
 for row in range(0, len(grid)):
 for col in range(0, len(grid[0])):
 if row == col:
 total = total + grid[row][col]
 return total

But	this	code	is	inefficient,	because	it	wastes	time	by	looping	over	large	chunks	of	the	matrix	that	we	know	don’t	
matter	(numbers	not	on	the	diagonal).		Because	there’s	a	mathematical	relationship	(row	==	col),	we	can	remove	the	
nested	loops	and	just	use	one	loop:	
	
def add_diagonal(grid):
 total = 0
 for row in range(0, len(grid)):
 total = total + grid[row][row]
 return total

2. Write	a	function	that	adds	up	numbers	on	the	upper-right	to	lower-left	diagonal.		Hint:	Figure	out	the	mathematical	
relationship	between	the	numbers	on	this	diagonal;	there	is	a	similar	relationship	to	the	one	in	problem	#1.	
	

3. Write	a	function	to	change	each	odd	number	in	a	matrix	by	multiplying	it	by	2	(the	original	matrix	should	be	altered;	
don’t	create	a	new	matrix).	
	
def mult2odd(grid):
	

4. Write	a	function	to	change	all	the	numbers	in	odd	rows	of	a	matrix	by	multiplying	them	by	2	(the	original	matrix	
should	be	altered;	don’t	create	a	new	matrix).	
	
def mult2OddRows(grid):
	

5. Write	a	function	to	print	the	sum	of	each	row	of	a	matrix.			
	
def print_sum_each_row(grid):
	
Example:	print_sum_each_row(matrix) would	print	9,	12,	18.		(printing	one	number	per	line	is	fine)	
	
Challenge:	Change	this	function	so	instead	of	printing	the	answer,	it	returns	a	list	of	these	sums.		E.g.:	[9,	12,	18]	
	

6. Write	a	function	to	print	the	sum	of	each	column	of	a	matrix.			
	
def print_sum_each_col(grid):
	
Example:	print_sum_each_col(matrix) would	print	6,	13,	20.		(printing	one	number	per	line	is	fine)	
	
Challenge:	Change	this	function	so	instead	of	printing	the	answer,	it	returns	a	list	of	these	sums.		E.g.:	[6,	13,	20]	
	

7. Write	a	function	to	print	the	smallest	number	in	each	row	of	a	matrix.	
	
def print_smallest_in_row(grid):
	
Example:	print_smallest_in_row(matrix2)	would	print	2,	-9,	4.	
	

8. Write	a	function	to	print	the	smallest	number	in	each	column	of	a	matrix.	
	
def print_smallest_in_col(grid):
	
Example:	print_smallest_in_col(matrix2)	would	print	-9,	0,	4,	1.	
	

9. Write	a	piece	of	code	that	creates	a	10	by	10	multiplication	table	in	a	grid.		Hint:	One	idea	is	to	start	by	using	the	
function	on	the	2d	list	handout	to	create	a	10	by	10	grid	of	zeroes,	and	then	use	nested	for	loops	to	change	each	
element	to	its	proper	number.	
	

10. Challenges:	change	the	print	smallest/largest	functions	to	return	lists	of	the	smallest/largest	items	in	each	
row/column,	rather	than	printing	them.		So	problem	5	would	return	the	list	[2,	-9,	4].	
	

