
(turn	over)	

Lab:	Graphics,	Functions,	and	Local	Variables	
	

1. Create	a	program	to	draw	a	bullseye	(looks	like	the	Target	logo)	on	
the	screen.		
 

o First,	define	a	main()	function	that	opens	a	canvas,	draws	one	
circle	using	draw_filled_circle	of	radius	50	and	closes	the	
canvas	on	a	click.	(Do	this	just	to	make	sure	your	graphics	are	
working	correctly.)	
	

o Then,	modify	main()	so	it	draws	five	concentric	circles	using	
the	draw_filled_circle	function.		The	circles	should	have	radii	of	10,	20,	30,	40,	and	50,	
and	should	alternate	colors	(use	set_color)	so	you	get	a	bullseye	effect	(see	the	picture	to	
the	right).		Hint:	the	circles	must	be	drawn	in	a	certain	order.	
	

2. Define	a	function	called	“draw_bullseye”	that	takes	two	parameters	that	will	represent	the	x-	
and	y-coordinates	of	the	center	of	the	bullseye.		Add	code	to	the	body	of	draw_bullseye	so	that	
when	called,	it	draws	a	bullseye	at	the	(x,	y)	location	specified	by	the	parameters.		Then,	edit	your	
main()	function	to	call	draw_bullseye	twice	with	two	different	sets	of	(x,	y)	locations	(pick	any	
coordinates	you’d	like).		The	effect	should	be	that	your	program	should	draw	the	bullseye	twice	at	
different	locations	on	the	canvas.	
	
Hints:		

o Your	function	definition	line	will	look	like	this:	
			def draw_bullseye(x, y): 
 

o You	should	keep	the	open_canvas	and	close_canvas	function	calls	in	main,	because	you	
only	want	those	to	happen	once	in	the	whole	program,	not	once	for	every	bullseye. 
	

o When	you’re	done,	there	should	not	be	any	circle-drawing	function	calls	inside	main	
anymore;	they	should	only	be	inside	of	draw_bullseye.		All	main	should	do	is	open	a	
canvas,	call	draw_bullseye	twice,	and	close	the	canvas	on	a	click.		
	

3. Modify	your	draw_bullseye	function	so	it	takes	a	third	and	fourth	parameter.		Call	these	
parameters	color1	and	color2.		These	parameters	will	be	strings,	and	will	allow	the	caller	of	
the	bullseye	function	choose	two	alternating	colors	for	the	bullseye.		Modify	the	code	in	the	
bullseye	function	to	use	the	color1	and	color2	variables	rather	than	the	fixed	colors	you	
picked	earlier.	
	
For	instance,	if	the	user	wanted	a	bullseye	centered	at	(100,	100)	colored	red	and	black,	they	
should	be	able	to	call	the	function	like	this:		draw_bullseye(100, 100, “red”, “black”) 
 
Once	you	make	this	change	to	the	definition	of	draw_bullseye,	make	sure	you	also	change	the	
calls	to	draw_bullseye	in	main	to	reflect	the	additional	arguments.	
	
	
	
	
	



(turn	over)	

4. Modify	your	main	function	so	the	user	can	type	in	the	(x,	y)	coordinates	of	the	center	of	a	bullseye	
they	want	to	draw,	and	the	colors	they	want	to	paint	it.	

o This	will	require	four	separate	input	statements:	one	for	x,	one	for	y,	and	two	for	the	colors.	
o The	input	statements	should	not	go	inside	the	bullseye	function;	they	should	be	inside	

the	main	function,	and	the	information	typed	in	should	be	passed	as	arguments	to	the	
bullseye	function.	
	

5. Modify	your	bullseye	function	definition	to	take	a	fifth	parameter:	the	radius	of	the	bullseye.		
You’ll	need	to	do	some	math	to	figure	out	what	the	radii	of	the	nested	circles	should	be	changed	to.		
Don’t	forget	to	modify	the	function	call(s)	in	main	to	add	in	the	fifth	parameter	(try	different	radii	
so	you	know	the	bullseye	scales	up	and	down	in	size).	
	

6. Modify	your	main	function	so	three	bullseyes	are	drawn	after	the	user	
inputs	the	four	variables.		The	first	bullseye	should	be	drawn	as	in	problem	
4	(based	off	the	inputs	the	user	supplies),	but	the	second	and	third	
bullseyes	should	be	offset	slightly	so	as	to	create	the	pattern	to	the	right	
(which	sort	of	looks	like	Mickey	Mouse	ears).		The	point	of	this	problem	is	
that	if	the	user	types	in	different	(x,	y)	coordinates,	all	three	bullseyes	
should	shift	locations	on	the	canvas	so	the	final	drawing	always	looks	like	
the	one	to	the	right.	
	

7. Challenge:	Write	a	function	called	draw_square(x, y, side)	that	takes	as	arguments	the	(x,	y)	
coordinates	of	the	center	of	a	square	and	the	length	of	a	side.		You	should	use	draw_line,	
draw_polyline,	or	draw_rect.		Remember:	x	and	y	should	be	the	center	of	the	square,	not	a	
corner.	
	

8. Challenge:	Write	a	function	called	draw_nested_squares	that	acts	just	like	draw_bullseye,	but	
the	effect	is	a	set	of	nested	squares,	rather	than	nested	circles.		This	is	more	mathematically	
challenging.		You	can	use	draw_filled_rect	for	this.	
	

9. Challenge:	Modify	your	program	so	the	user	can	choose	the	center	of	the	bullseye	using	a	mouse	
click	rather	than	typing	in	the	coordinates.		Refer	to	the	graphics	library	handout.	
	

10. Challenge:	Modify	your	program	so	the	user	can	choose	the	center	and	radius	of	the	bullseye	with	
two	mouse	clicks	(first	click	chooses	the	center,	second	click	chooses	a	point	on	the	border	of	the	
bullseye	from	which	you	can	compute	the	radius).		You’ll	need	to	use	the	distance	formula	for	this	
one:	
	
The	distance	from	point	(x1,	y1)	to	(x2,	y2)	is	!(𝑥$ − 𝑥&)$ + (𝑦$ − 𝑦&)$.		To	use	the	square	root	
function	in	Python,	put	from math import *	at	the	top	of	your	program,	then	you	can	use	the	
function	sqrt().	
	


