10/23/2019

COMP 141

Strings

‘Rhates Callege

Announcements

¢ Program 6 has been assigned

— Due Tuesday, October 29t by 11:55pm via Moodle

« Solutions to File Reading Lab, Problems 2-4 in box folder.
* No office hours tomorrow — feel free to email me your

questions.

Basic String Operations

Many types of programs perform operations on strings
— So far we’ve only really seen strings as input/output

In Python, many tools for examining and manipulating strings

— Strings are sequences, so many of the tools that work with
sequences work with strings

Strings are built from characters

The string "Computer" is represented internally
like this:

e "o "™ e run [e
* Each piece of a string is called a character.

* A character is a special kind of string that is

made up of exactly one letter, number, or
symbol.

10/23/2019

Accessing Characters

Each character in a string is numbered by its position:
0 1 2 3 4 5 6 7
o “w P

o

u

P T

m

o

The numbers shown here above the characters are called indices
(singular: index) or positions.

Figure 9-2 String indexes
'Roses are red'
trrrrrerrettt
012 3 45678 9101112
myString = “Roses are red”
ch = myString[6] #ch is now equal to ‘a’

Accessing Characters

0 1 2 3 4 5 6 7

r

ay agn

m

p

un g

(]

acn

» There is a separate variable for each character in the
string, which is the string variable followed by []
with an integer in the middle.

my_string = "Computer"

print (my_string[0]) # prints C

print (my_string[7]) # prints r

Accessing Characters

* These individual variables can be used just like

regular variables, except you cannot assign to them.

my_string = "Computer"
my_string[0] = "B" # illegal!

String are immutable (unchangeable)
- Once they are created, they cannot be changed

Accessing Characters

0 1 2 3 4 5 6 7
‘ acr

<

* You can print them, assign them to variables, pass
them to functions, etc.

my_string = "Computer”

first = my_string[0]

third = my_string[2]

print (first, third, my_string[4])

10/23/2019

Another Example

name = input(“What is your name?”)
initial = name[©@]

print(“The first initial of your name
is”, initial)

Sample Output:
What is your name? Catie
The first initial of your name is C

def which_first(letterl, letter2):
if letterl < letter2:
return letterl
else:
return letter2

def main():
s = "Computer"
earlier = which_first(s[6], s[3])
print(earlier, "comes earlier in the alphabet.")
main()

Getting the Length of a String

* IndexError exception will occur if:
— You try to use an index that is out of range for the string
— Likely to happen when loop iterates beyond the end of the
string
* len(string) function can be used to obtain the length of a string
— Useful to prevent loops from iterating beyond the end of a string

myString = “Hello World”
n = len (myString)
print (myString[n+1]) #Th.

print (myString[n]) #This w

Getting the Length of a String

Assume s is a string variable

len (s) returns the length of s

len(“Computer”) returns 8

len(“A B C”) returns ??? 5

len(“”) returns ??? O

len uses return, meaning if you want to capture the length,
you should save the return value in a variable

10/23/2019

Loops over Strings

* Wanting to be able to access characters one at a time
naturally leads to using a for loop to process strings

Suppose we have a string variable named s. (You don't
know what actual characters are stored in s, though.)

* What is the first numerical position in s?
* What is the last numerical position in s?

Loops over Strings

* Wanting to be able to access characters one at a time
naturally leads to using a for loop to process strings

Suppose we have a string variable named s. (You don't
know what actual characters are stored in s, though.)

* What is the first numerical position in s? @
* What is the last numerical positionins? len(s)-1
#Assume s is a string variable
for pos in range(?, ?):
#tdo something with s[pos]

Loops over Strings

* Wanting to be able to access characters one at a time
naturally leads to using a for loop to process strings

Suppose we have a string variable named s. (You don't
know what actual characters are stored in s, though.)

* What is the first numerical position in s? @
* What is the last numerical positionins? len(s)-1
#Assume s is a string variable
for pos in range(@, len(s)):
#do something with s[pos]

Example

s = “orange”
for pos in range(@, len(s)):
print(s[pos])

“_n “, n “u_n “._n “_n “ n

10/23/2019

O

This program counts the number of times
the letter T (uppercase or lowercase)
appears in a string.

main():
Create a variable to use to hold the count.
¥ The variable must start 0

count = 0

Get a string from the user.

my string = input('Enter a sentence: ')

range (0, len(my string)):
ch = my string[ind]
if ¢h == 'T' ocr ch ==

count += 1

count, 'times.')

Call the main functicn.
main()

Practice

Write a loop to count the number of capital letter
A’s in a string.
Write a loop to count capital or lowercase A’s.

Write a loop to print every other character in a
string, starting with the first.

Write a loop to print all the letters in a string in
reverse order

Challenge: Write a loop to print the letters of a
string in forward order intermixed with backward
order (alternating between forward/backward).
e.g., for “abcde” you would print aebdccdbea

String Testing Methods

Table 9-1 Some string testing methods

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at least
one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters, and is at least one
character in length. Returns false otherwise.

1sdigit() Returns true if the string contains only numeric digits and is at least one character
in length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters, and is at least one
character in length. Returns false otherwise. (Whitespace characters are spaces,
newlines (\n), and tabs (\t)

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the

string contains at least one alphabetic letter. Returns false otherwise.

Example using isupper()

#This program counts the number of times
#that an uppercase letter ars in a string.

ef main () :
#Create a variable to use to heold the count.
count = 0

#Get the string from the user.

my string = input("Enter a sentence: ")
letters
for ind in range (0, len(my_string)):

#access each character by its index
ch = my string[ind]
#test sach character to see i
if ch.isupper():

count += 1

=3

int the result.
int {count, "of the letters were

oo

main()

10/23/2019

String Modification Methods

Table 9-2

Method
lower()

1strip()

1strip(char)

rstrip()

rstrip(char)

strip()

strip(char)

upper ()

Description
Returns a copy of the string with all alphabetic letters converted to lowercase. Any

character that is already lowercase, or is not an alphabetic letter, is unchanged.

Returns a copy of the string with all leading
Leading whitespace characters are spaces,
appear at the beginning of the string

whitespace characters removed

wlines (\n), and tabs (\t) that

The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed
Returns a copy of the string with all trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

The char argument is a string containing a character. The method retums a copy of
the string with all instances of r that appear art the end of the string remor

Returns a copy of the string with all leading and trailing whitespace characters
removed.

Returns a copy of the string with all instances of char that appear at the
beginning and the end of the string removed.

Returns a copy of the scring with all alphabetic letters converted to uppercase. Any
character that s already uppercase, or is not an alphabetic letter, is unchanged

Example using lower()

shape =

shape =

if shape
\Y

else:
va

input(“Enter shape: Sphere or Cube)
shape.lower()
== ‘sphere’ or shape

= ‘cube’:

alidShape = True

lidShape = False

