Announcements

Program 8 assigned - Due Thursday, Nov. $21^{\text {st }}$ by $11: 55$ pm

Sample Solution to Talk Like a Pirate lab in Box folder (talkLikeAPirate.py)
COMP 141

Two-Dimensional Lists

- Two-dimensional list: a list that contains other lists as its elements
- Also known as nested list
- Common to think of two-dimensional lists as having rows and columns
- Useful for working with multiple sets of data
- To process data in a two-dimensional list need to use two indexes
- Typically use nested loops to process

Creating Two-Dimensional Lists

Accessing Individual Elements

```
grid = [[1, 3, 5, 7], [2, 4, 6, 8], [5, 10, 15, 20]]
```


Accessing Individual Elements

To access an individual element in a grid, use two positions: row first, then column.

row 0	$\begin{aligned} & 1 \\ & \text { grid[0][0] } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & \text { grid }[0][1] \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & \text { grid }[0][2] \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 7 \\ \text { grid }[0][3] \\ \hline \end{array}$
row 1	$\begin{aligned} & 2 \\ & \operatorname{grid}[1][0] \end{aligned}$	$\begin{aligned} & 4 \\ & \operatorname{grid}[1][1] \end{aligned}$	$\begin{aligned} & 6 \\ & \operatorname{grid}[1][2] \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \operatorname{grid}[1][3] \end{aligned}$
row 2	$\begin{aligned} & 5 \\ & \operatorname{grid}[2][0] \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & \text { grid[2][1] } \end{aligned}$	$\begin{aligned} & 15 \\ & \text { grid[2][2] } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & \text { grid[2][3] } \\ & \hline \end{aligned}$

row 1

Computing Number of Rows/Columns
grid $=[[1,3,5,7],[2,4,6,8],[5,10,15,20]]$

- How do we calculate the number of rows in a 2-D list?
- len (grid) = \# of rows
- How do we calculate the number of columns in a 2-D list?
- len (grid[rowid]) \#use rowid= 0 if you're unsure which row

Assigning Values to a 2-D list

\# This program assigns random numbers to
\# a two-dimensional list
import random
\# Constants for rows and colurns
ROWS $=3$
COLS $=4$
def main():
\ddagger Create a two-dimensional list
values $=\left[\begin{array}{llll}10, & 0, & 0, & 0\end{array}\right]$,
$\left.\begin{array}{llll}10, & 0, & 0, & 0] \\ {[0,} & 0, & 0, & 0\end{array}\right]$
\ddagger Fill the list with randorn numbers.
for r in range (ROWS)
c 2 n range (CoLS) :
values $[r][c]=$ random.randint $(1,100)$
\& Display the random numbers.
print(values)
\# Call the main function
main()
Program Output
[[99, 46, 8, 19], [1, 52, 38, 48], [55, 4, 88, 78]]

Printing Values in a 2-D List

def main():
\# Create a two-dimensional list.
values $=[[4,17,34,24]$,
$\left[\begin{array}{lll}{[46,} & 21, & 54, \\ {[54,} & 92, & 10, \\ 100]\end{array}\right.$
\#Print the 2-D list, 1 value per line
for r in range(len(values)):
for c in range(len(values[r])):
print(values [r] [c])
\# Call the main function.
main() main()

Printing Values in a 2-D List

def main():
values $=[[4,17,34,24]$,
$\left.\begin{array}{lll}{[46,} & 21, & 54, \\ {[54,} & 92, & 10, \\ 100]\end{array}\right]$
for r in range(len(values)):
for c in range(len(values[r])): print(format(values[r [$c \mathrm{c}]$, " $4 \mathrm{~d} "$), end='') print()
\#Call the main function
main()

Sum of Rows

- Write a function to print the sum of each row in your table.

Practice

Using 2DListFunctions.py from the Box.com directory, fill in the code for the 3 functions listed:

- sumAll - returns the sum of all elements in the 2-D list
- sumColumns - prints out the sums of each column
- maxRow - compute the sum of each row and return the index and sum of the maximum row

