

Tic-Tac-Toe with Graphics

Any questions?

Solutions in Box.com folder

Underlying Data Representation

- Remember back to the beginning of the semester
- We said that all data in a computer is stored in sequences of 0s and 1s
- Byte: just enough memory to store letter or small number
 - Divided into eight bits
 - Bit: electrical component that can hold positive or negative charge, like on/off switch
 - The on/off pattern of bits in a byte represents data stored in the byte

Binary Numbers

A Binary Number is made up of only **0**s and **1**s.

Example of a Binary Number

110100

There is no 2,3,4,5,6,7,8 or 9 in Binary!

How do we count using binary?

Binary	
0	We start at 0
1	Then 1
???	But then there is no symbol for 2what do we do?

How do we count in Decimal?

Decimal	
0	Start at 0
	Count 1,2,3,4,5,6,7,8
9	This is the last digit in Decimal
10	So we start back at 0 again, but add 1 on the left

Applying to Binary									
	Binary								
	0	We start at 0							
*	1	Then 1							
**	10	Now we start back at 0, and add 1 to the left							
***	11	1 more							
***	100	Start back at 0 again, and add one to the number on the left but that number is already at 1 so it also goes back to 0 and 1 is added to the <i>next position</i> on the left							
			8						

	Decimal vs. Binary																
De	ecimal:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	linary:	0	1	10	11	100	101	110	111	100	0 1001	1010	1011	1100	1101	1110	1111
	Decimal: Binary:			20	0 1	25 11001		30 11110		000	50 110010		100 1100100		000 1	500 111101	.00
	"Binary is as easy as 1, 10, 11."																

Adding Binary Numbers	
10011	

+ 1111

100010

13

Practice

- Convert 39₁₀ into binary
- Convert 1010110₂ into decimal

Practice • Write 2 functions: - toBinary(decimal) - takes in a decimal number and returns its binary equivalent toDecimal(binary) – takes in a binary number and returns its decimal equivalent - Hints: In toDecimal, you should convert binary to a string In toBinary, you should create binary as a string, then typecast it to an integer before returning. • Examples: print(toBinary(1198)) #Prints 10010101110 #Prints 101 print(toBinary(5)) print(toDecimal(10001110)) #Prints 142 print(toDecimal(11)) #Prints 3 15