

\# user and displays the corresponding letter grade.
\# Constants for the grade thresholds
A_SCORE $=90$
B_SCORE $=80$
C_SCORE $=70$
D_SCORE $=60$
\# Get a test score from the user.
score $=$ int(input('Enter your test score: '))
\# Determine the grade
if score >= A_SCORE:
print('Your grade is A.')
else:
if score >= B_sCORE:
print('Your grade is B.')
else:
1f score >= C_sCORE:
print('Your grade is C.')
else:
11 score >= D_SCORE:
print('Your grade is D.')
else:
print('Your grade is F.'

The if-elif-else Statement

- if-elif-else statement: special version of a decision structure
- Makes logic of nested decision structures simpler to write
- Can include multiple elif statements
- Syntax: if condition1:
statements
elif condition2:
statements
else:
statements

```
# This program gets a numeric test score from the
# user and displays the corresponding letter grade.
# It is equivalent to the program in the previous slide
# Constants for the grade thresholds
A_SCORE = 90
B_SCORE = 80
C_SCORE = 70
D_SCORE = 60
# Get a test score from the user.
score = int(input('Enter your test score: '))
# Determine the grade.
    if score >= A_SCORE:
        print('Your grade is A.')
elif score >= B SCORE
        print('Your_grade is B.')
elif score >= C_SCORE:
        print('Your grade is C.')
elif score >= D_SCORE:
        print('Your grade is D.')
else:
        print('Your grade is F.')
```


Logical Operators

- Logical operators: operators that can be used to create complex Boolean expressions
- and operator and or operator: binary operators, connect two Boolean expressions into a compound Boolean expression
- not operator: unary operator, reverses the truth of its

Boolean operand

The and Operator

Both individual tests must be True to make the entire if statement True.
if \qquad and \qquad :

Expression	Value of the Expression
false and false	false
false and true	false
true and false	false
true and true	true

Short-Circuit Evaluation

- Short circuit evaluation: deciding the value of a compound Boolean expression after evaluating only one sub expression
- Performed by the or and and operators
- For or operator: If left operand is true, compound expression is true. Otherwise, evaluate right operand
- For and operator: If left operand is false, compound expression is false. Otherwise, evaluate right operand

The not Operator

- Takes a Boolean expression as operand and reverses its logical value
- Sometimes it may be necessary to place parentheses around an expression to clarify to what you are applying the not operator

Truth table for the not operator

Expression	Value of the Expression
true	false
false	true

Checking Numeric Ranges with Logical

Operators

- To determine whether a numeric value is within a specific range of values, use and - Example: x >= 10 and $x<=20$
- To determine whether a numeric value is outside of a specific range of values, use or

$$
\text { - Example: } \mathrm{x}<10 \text { or } \mathrm{x}>20
$$


```
# This program determines whether a bank customer
# qualifies for a loan.
# Constants for minimum salary and minimum
# years on the job
MIN_SALARY = 30000.0
MIN_YEARS = 2
# Get the customer's annual salary.
salary = float(input('Enter your annual salary: '))
# Get the number of years on the current job.
years_on_job = int(input('Enter the number of ' +
                                    years employed: '))
# Determine whether the customer qualifies.
# if salary >= MIN_SALARY and years_on_job >= mIN_YEARS:
    prin
    print('You do not qualify for this loan.')
```


Review Questions

1. Does an if statement always need to be followed by an else statement?
2. If you write an if-else statement, under what circumstances do the statements that appear after the else clause execute?
3. Assume the variables $a=2, b=4, c=6$. What do the following statements evaluate to (true or false)?
a) a $==4$ or $b>2$
b) $6<=$ c and a > 3
c) $1!=b$ and $c!=3$
d) $\mathrm{a}>=-1$ or $\mathrm{a}<=\mathrm{b}$
e) $\operatorname{not}(a>2)$

In-Class Lab

