1. Construct a De Bruin Graph for the following set of reads with $k=4$: $R=\{A T G A T, G A T T A, A T T A T, C A T G A\}$. Make sure to clearly indicate edge multiplicities.

What do you think the original sequence was?
CATGATTAT
2. Sequencing coverage (the number of times each base was sequenced) can affect what a de Bruijn graph looks like. Suppose you have "perfect sequencing" data (no errors and reads uniformly cover the genome) and have an average sequencing coverage of c. What effect does this have on the resulting de Bruijn graph?

- Every edge will have a multiplicity that is a multiple of c.
- Ex. If $c=30$, edge multiplicities are $30,60,90$. Why?
- Ex. 30 for a k-mer that appears once, 60 for twice, etc.
- Non uniform data will cause variation in multiplicities.

3. Sequencing coverage (the number of times each base was sequenced) can affect what a de Bruijn graph looks like. Suppose you have gaps in your sequencing - that is portions of the genome that are not covered. What effect does this have on the resulting de Bruijn graph?

- Graph may become disconnected.
- If reads have overlap of $<k-2$, will also become disconnected.

4. Eulerization is the process of turning a graph (or a multi-graph) into a Eulerian graph (one that contains an Eulerian Path). Construct the De Bruijn graph for the following set of sequences with $k=3 . R=\{A T G G C, G T G C A, G G C G T G\}$. (The fact that this set of sequences has different lengths should not be of a concern to you in this problem).

What is the fewest number of edge additions or removals to make the resulting graph Eulerian?
2
Recall: a connected, directed graph G has a Eulerian path it and only if it contains at most two semi-balanced
vertices and an other vertices are balaced.
$T G$ and (GC) are semi-balanced, but must be balanced.
5. What effects can choosing smaller or larger values of k have upon the resulting de Bruijn graph?
Smaller:

- Fewer vertices (limit is 4^{k-1}). Also, a limit on number of "unique" edges. (Pro)
- Graph can become more interconnected. Fewer unique paths. (Con)

Larger

- We can span repeats. (Pro)
- Graph can become disconnected. (Con)

6. Can you think of any graph simplification that would be helpful for being able to find Eulerian paths (or a set of such paths) in a de Bruijn graph?

- Collapse paths
- Unzip edges

Summary - Use of Eulerian Path to do assembly is appealing (fast), but has lots of practical issues.

