
CS 342: Bioinformatics
Additive Phylogeny Spring 2020

Large Additive Distance Phylogeny Problem:
Given: An additive n× n distance matrix D
Find: Phylogenetic T and branch lengths such that dT (i, j) = Dij for all 1 ≤ i, j ≤ n.

A degenerate triple is a set of three species i, j, k where Dij +Djk = Dik.

Algorithm Idea:

• If D has a degenerate triple i, j, k, then j can be “removed” from D, reducing the size of
the problem.

• Otherwise, you can create one by “shortening” all hanging edges in the tree by δ

• All paths between leaves then shrink by 2δ.

• Repeat until you have a 2× 2 size matrix.

• “Traceback” through matrices, “re-grow” hanging edges, and insert removed nodes.

Work through this example to find the phylogenetic tree T and branch lengths.

A B C D
A 0 4 10 9
B - 0 8 7
C - - 0 9
D - - - 0

δ = 1

A B C D
A 0 2 8 7
B - 0 6 5
C - - 0 7
D - - - 0

Degenerate Triple:
i← A, j ← B, k ← C

A C D
A 0 8 7
C - 0 7
D - - 0

δ = 3

A C D
A 0
C - 0
D - - 0

Degenerate Triple:
i← , j ← , k ←

A C
A 0
C - 0



CS 342: Bioinformatics
Additive Phylogeny Spring 2020

Pseudo-code for Algorithm

AdditivePhylogeny(D):

if D is a 2 x 2 matrix:

T = tree of a single edge of length D[1,2]

return T

if D has no degenerate triples:

delta = ComputeTrimming(D)

D = Trim(D, delta)

Find a triple i, j, k in D such that D[i, j] + D[j, k] = D[i, k]

x = D[i, j]

Remove jth row and jth column from D

T = AdditivePhylogeny(D) #recursive call

#Traceback to add vertex back in to T

Add a new vertex v to T at distance x from i on path to k

Add j back to T by creating an edge (v,j) of length 0

#Check Distances - if matrix is not additive, you will catch it here

for every leaf l in T:

if distance from l to v in the tree != D[l, j]:

output ‘‘matrix is not additive’’

return

#Re-grow all leaves

D = Grow(D, delta)

return T

Brainstorm Question: How would you go about computing the trimming parameter δ?


