Large Additive Distance Phylogeny Problem:

Given: An additive $n \times n$ distance matrix D
Find: Phylogenetic T and branch lengths such that $d_{T}(i, j)=D_{i j}$ for all $1 \leq i, j \leq n$.
A degenerate triple is a set of three species i, j, k where $D_{i j}+D_{j k}=D_{i k}$.

Algorithm Idea:

- If D has a degenerate triple i, j, k, then j can be "removed" from D, reducing the size of the problem.
- Otherwise, you can create one by "shortening" all hanging edges in the tree by δ
- All paths between leaves then shrink by 2δ.
- Repeat until you have a 2×2 size matrix.
- "Traceback" through matrices, "re-grow" hanging edges, and insert removed nodes.

Work through this example to find the phylogenetic tree T and branch lengths.

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	4	10	9
\mathbf{B}	-	0	8	7
\mathbf{C}	-	-	0	9
\mathbf{D}	-	-	-	0

$\delta=1$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	2	8	7
\mathbf{B}	-	0	6	5
\mathbf{C}	-	-	0	7
\mathbf{D}	-	-	-	0

Degenerate Triple:

$i \leftarrow A, j \leftarrow B, k \leftarrow C$

	\mathbf{A}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	8	7
\mathbf{C}	-	0	7
\mathbf{D}	-	-	0

$\delta=3$

	\mathbf{A}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0		
\mathbf{C}	-	0	
\mathbf{D}	-	-	0

Degenerate Triple:

$i \leftarrow$ \qquad ,$j \leftarrow$ \qquad ,$k \leftarrow$

	\mathbf{A}	\mathbf{C}
\mathbf{A}	0	
\mathbf{C}	-	0

```
Pseudo-code for Algorithm
AdditivePhylogeny(D):
    if D is a 2 x 2 matrix:
        T = tree of a single edge of length D[1,2]
            return T
    if D has no degenerate triples:
            delta = ComputeTrimming(D)
            D = Trim(D, delta)
    Find a triple i, j, k in D such that D[i, j] + D[j, k] = D[i, k]
    x = D[i, j]
    Remove jth row and jth column from D
    T = AdditivePhylogeny(D) #recursive call
    #Traceback to add vertex back in to T
    Add a new vertex v to T at distance x from i on path to k
    Add j back to T by creating an edge (v,j) of length 0
    #Check Distances - if matrix is not additive, you will catch it here
    for every leaf l in T:
        if distance from l to v in the tree != D[l, j]:
                output ''matrix is not additive''
                return
    #Re-grow all leaves
    D = Grow(D, delta)
    return T
```

Brainstorm Question: How would you go about computing the trimming parameter δ ?

