CS342: Bioinformatics Lecture 3

Cancer Genomics Hub A resource of the National Cancer Institute

The Cancer Genomics Hub mission is now completed.

The Cancer Genomics Hub was established in August 2011 to provide a repository to The Cancer Genome Atlas, the childhood cancer initiative Therapeutically Applicable Research to Generate Effective Treatments and the Cancer Genome Characterization Initiative.

CGHub rapidly grew to be the largest database of cancer genomes in the world, storing more than 2.5 petabytes of data and serving downloads of nearly 3 petabytes per month.

Harmonized Cancer Datasets Genomic Data Common Get Started by Exploring: Projects Exploration	ns Data Portal	ry	Cases by Major Primary Site Adrenal Gland Bile Duct Bladder Blood Bone Bone Marrow Brain Breast
Q e.g. BRAF, Breast, TCGA-BLCA, T	CGA-A5-A0G2		Colorectal Esophagus Eye
Data Portal Summary Data Rele	ase 10 - December 21, 2017		Liver Lung Lymph Nodes
PROJECTS	PRIMARY SITES	CASES	Ovary
(140	6 0	å 32,555	Pancreas Pleura Prostate Skin
FILES	GENES	MUTATIONS	Soft Tissue
310,859	ğ́22,147	off 3,142,246 🥻	Testis Thymus Thyroid Uterus 1.000 2.000 3.000 4.000

https://www.ebi.ac.uk/ega/home

Cancer projects	76
Cancer primary sites	21
Donors with molecular data in DCC	17,440
Total Donors	20,383
Simple somatic mutations	68,194,271
Nutated Genes	57,668

The Pancancer Analysis of Whole Genomes (PCAWG) study is an international collaboration to identify common patterns of mutation in more than 2,800 cancer whole genomes from the International Cancer Genome Consortium.

130 GB x 2 files x 2,800 patients = 728,000 GB = 728 TB

Exact Pattern Matching Problem

Input: Two strings, (1) a pattern $p = p_1 p_2 \dots p_n$ and (2) a larger text $t = t_1 t_2 \dots t_m$ **Output:** All positions i, $1 \le i \le m - n + 1$, such that $t_i \dots t_{i+n-1} = p_1 \dots p_n$.

Example: t = *banana* and p = *an*

Multiple Pattern Matching Problem

Input: A set of k patterns $p_1, p_2, ..., p_k$, and a larger text $t = t_1 t_2 ... t_m$. **Output:** All positions $1 \le i \le m$, such that the substring starting at t_i matches p_j for $1 \le j \le k$. **Example:** t = banana, $p_1 = an$, $p_2 = nan$

Keyword Trees

Def: data structure for representing a collection of strings

- Supports fast pattern matching
- Rooted tree
- Each edge is labeled with a single letter
- Two edges out of a vertex must have different labels
- Every keyword is spelled on a path from root to leaf

Multiple Pattern Matching Problem

Input: A set of k patterns $p_1, p_2, ..., p_k$, and a larger text $t = t_1 t_2 ... t_m$. **Output:** All positions $1 \le i \le m$, such that the substring starting at t_i matches p_j for $1 \le j \le k$. **Example:** t = banana, $p_1 = an$, $p_2 = nan$

Questions: [think, pair, share]

- Does the keyword tree solve the multiple pattern matching problem? Why?
- 2. What happens if a pattern is a prefix of another pattern?

Multiple Pattern Matching with Keyword Trees

Runtime? Assume N is sum of lengths of patterns, m is the length of the text, and n is length of longest pattern

O(N + nm)

Question: Is this better than brute force? [Think, pair, share]