CS342: Bioinformatics Lecture 3

DNA Sequence Data

The Cancer Genomics Hub mission is now completed.

The Cancer Genomics Hub was established in August 2011 to provide a repository to The Cancer Genome Atlas, the childhood cancer initiative Therapeutically Applicable Research to Generate Effective Treatments and the Cancer Genome Characterization Initiative.

CGHub rapidly grew to be the largest database of cancer genomes in the world, storing more than 2.5 petabytes of data and serving downloads of nearly 3 petabytes per month.

DNA Sequence Data

Harmonized Cancer Datasets
Genomic Data Commons Data Portal Get Started by Exploring:

■ Projects	Exploration	A Analysis

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2		
Data Portal Summary Data Release 10-December 21, 2017		
PROJECTS \square 40	PRIMARY SITES 60	$e_{32,555}^{\text {CASES }}$
FILES	genes	mutations
310,859	22,147	-1. $3,142,246$

Cases by Major Primary Site

https://gdc.cancer.gov/

DNA Sequence Data

European Genome-phenome Archive

```
All v
```

Examples: EGAS00000000001, Cancer
Search

EGA home	About	Studies	Datasets

Data access committees
Data providers
Submit to EGA
Contact Us
Login
https://www.ebi.ac.uk/ega/home

DNA Sequence Data

PCAWG
PanCancer Analysis OFWHOLE GENOMES

Cancer projects	76
Cancer primary sites	21
Donors with molecular data in DCC	17,440
Total Donors	20,383
Simple somatic mutations	$68,194,271$
Mutated Genes	57,668

The Pancancer Analysis of Whole Genomes (PCAWG) study is an international collaboration to identify common patterns of mutation in more than 2,800 cancer whole genomes from the International Cancer Genome Consortium.
$130 \mathrm{~GB} \times 2$ files $\times 2,800$ patients $=728,000 \mathrm{~GB}$ $=728 \mathrm{~TB}$

DNA Sequence Data

Exact Pattern Matching Problem

Input: Two strings, (1) a pattern $p=p_{1} p_{2} \ldots p_{n}$ and (2) a larger text $t=t_{1} t_{2} \ldots t_{m}$ Output: All positions i, $1 \leq i \leq m-n+1$, such that $t_{i} \ldots t_{i+n-1}=p_{1} \ldots p_{n}$.

Example: $\mathrm{t}=$ banana and $\mathrm{p}=a n$

Multiple Pattern Matching Problem

Input: A set of k patterns $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}$, and a larger text $t=t_{1} t_{2} \ldots t_{m}$. Output: All positions $1 \leq i \leq m$, such that the substring starting at t_{i} matches p_{j} for $1 \leq j \leq k$.
Example: $\mathrm{t}=$ banana, $\mathrm{p}_{1}=a n, \mathrm{p}_{2}=n a n$

Keyword Trees

Def: data structure for representing a collection of strings

- Supports fast pattern matching
- Rooted tree
- Each edge is labeled with a single letter
- Two edges out of a vertex must have different labels
- Every keyword is spelled on a path from root to leaf

Multiple Pattern Matching Problem

Input: A set of k patterns $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}$, and a larger text $t=t_{1} t_{2} \ldots t_{m}$. Output: All positions $1 \leq i \leq m$, such that the substring starting at t_{i} matches p_{j} for $1 \leq j \leq k$.
Example: $\mathrm{t}=$ banana, $\mathrm{p}_{1}=a n, \mathrm{p}_{2}=$ nan

Questions: [think, pair, share]

1. Does the keyword tree solve the multiple pattern matching problem? Why?
2. What happens if a pattern is a prefix of another pattern?

Multiple Pattern Matching with Keyword Trees

Runtime? Assume N is sum of lengths of patterns, m is the length of the text, and n is length of longest pattern

$$
O(N+n m)
$$

Question: Is this better than brute force? [Think, pair, share]

